

Conversion of 1,4-Diketones into para-Disubstituted Benzenes

Vincent E. Ziffle, Ping Cheng, and Derrick L. J. Clive*

Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

derrick.clive@ualberta.ca

Received July 28, 2010

Reaction of acetylides with aldehydes to form but-2-yne-1,4-diols, followed by triple bond reduction and oxidation of the hydroxyl groups, gives 1,4-diketones; these react with vinyllithium, and the resulting diols undergo ring-closing metathesis to form 2-cyclohexene-1,4-diols. Dehydration, usually by acid treatment, then gives benzenes carrying substituents in a 1,4 relationship. Use of substituted vinyllithiums provides further substitution on the final benzene rings. The method can be applied to the synthesis of C5-aryl carbohydrates.

Introduction

Several years ago a need arose in this laboratory to convert a methyl ester into a benzene ring that incorporated the ester carbonyl carbon as part of the ring. Such a transformation was intended to allow, for example, conjugate addition to an α,β -unsaturated ester (or synthetic equivalent), followed by conversion of the ester into a phenyl group. The required transformation was solved¹ along the lines summarized in Scheme 1. While that method, which affords not only monosubstituted benzenes but also a limited range of polysubstituted benzenes, was being developed, a related procedure

(1) Clive, D. L. J.; Pham, M. P. J. Org. Chem. 2009, 74, 1685-1690.

SCHEME 1. Previous Route to Benzenes

was also explored (Scheme 2). In this approach, 1,4-diketones were converted by reaction with vinyllithium into diols, which were then subjected to ring-closing metathesis and dehydration, producing in the simplest case *para*-disubstituted benzenes. We describe here full details of this work. Numerous methods are, of course, available for making aromatic compounds,^{2,3} and a growing number of them do

Published on Web 11/10/2010

DOI: 10.1021/jo101489g © 2010 American Chemical Society

⁽²⁾ Reviews on the preparation of benzenes: (a) Bamfield, P.; Gordon,
P. F. Chem. Soc. Rev. 1984, 13, 441–488. (b) Snieckus, V. Chem. Rev. 1990,
90, 879–933. (c) Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem., Int. Ed. 2006, 45, 2664–2670. (d) Ballini, R.; Palmieri, A.; Barboni, L. Chem. Commun. 2008, 2975–2985.

⁽³⁾ For recent methods for the preparation of aromatic rings, see: (a) Langer,
P.; Bose, G. Angew. Chem., Int. Ed. 2003, 42, 4033–4036. (b) Park, D. Y.;
Kim, S. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6315–6319.
(c) Grisé, C. M.; Barriault, L. Org. Lett. 2006, 8, 5905–5908. (d) Park, D. Y.;
Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6641–6645. (e) Dai,
M.; Sarlah, D.; Yu, M.; Danishefsky, S. J.; Jones, G. O.; Houk, K. N. J. Am.
Chem. Soc. 2007, 129, 645–657. (f) Mamat, C.; Büttner, S.; Trabhardt, T.;
Fischer, C.; Langer, P. J. Org. Chem. 2007, 72, 6273–6275. (g) Sher, M.; Ali,
A.; Reinke, H.; Langer, P. Tetrahedron Lett. 2008, 49, 5400–5402. (h) Reim,
S.; Adeel, M.; Hussain, I.; Yawer, M. A.; Ahmed, Z.; Villiger, A.; Langer, P.
Tetrahedron Lett. 2008, 49, 4901–4904. (i) Reim, S.; Langer, P. Tetrahedron
Lett. 2008, 49, 2329–2332. (j) Austin, W. F.; Zhang, Y.; Danheiser, R. L.
Tetrahedron 2008, 64, 915–925. (k) Bunescu, A.; Reimann, S.; Lubbe, M.;
Spannenberg, A.; Langer, P. J. Org. Chem. 2009, 74, 5002–5010. (l)
Takahashi, H.; Yoshida, K.; Yanagisawa, A. J. Org. Chem. 2009, 74, 502–5010. (l)

JOC Article

involve ring-closing metathesis.⁴ The present approach differs from the others both in the manner of constructing the diene for the metathesis step and in the fact that the design specifically allows an aliphatic aldehyde to be converted into a benzene ring incorporating the original carbonyl carbon.

Results and Discussion

1,4-Diketones, the key intermediates for our approach, are available by a number of classical routes,⁵ and we selected the use of acetylenes as representing a straightforward and versatile method that met our needs. To this end, various acetylenic alcohols (Table 1, column 1, entries 1-6, 8) were prepared by the standard process of acetylide addition to an aldehyde. We generally used trimethylsilylacetylene as a convenient acetylide synthon and then removed the silicon group

with K_2CO_3 in MeOH. Small but conventional modifications of this route were applied to make acetylene **19** (entry 6). In this case, the initial adduct from dihydrocinnamaldehyde and lithium trimethylsilylacetylide was silylated with *i*-Pr₃SiCl, and after that step, removal of the Me₃Si group gave acetylene **19**. The overall sequence of entry 7 is also different from the others as it is based on an α , ω -dialdehyde that is converted into a 16-membered cyclic 1,4-diketone (**26**) by way of ring-closing metathesis under conditions of high dilution (**24** \rightarrow **25**), followed by double bond hydrogenation and Jones oxidation (**25** \rightarrow **26**). The starting α, ω -dialdehyde was assembled as shown in eq 1.⁶

Each of the acetylenes listed in Table 1, column 1, entries 1-6 and 8, was deprotonated and treated with an aldehyde, so as to generate the internal acetylenes shown in column 2. Hydrogenation over Pt-C or Pd-C served to saturate the triple bond, and the resulting diols for entries 1-5 were

^{(4) (}a) Kotha, S.; Mandal, K. Tetrahedron Lett. 2004, 45, 2585–2588.
(b) Yoshida, K.; Imamoto, T. J. Am. Chem. Soc. 2005, 127, 10470–10471.
(c) Yoshida, K.; Kawagoe, F.; Iwadate, N.; Takahashi, H.; Imamoto, T. Chem. Asian J. 2006, 1, 611–613. (d) Yoshida, K.; Toyoshima, T.; Imamoto, T. Chem. Commun. 2007, 3774–3776. (e) Yoshida, K.; Horiuchi, S.; Iwadate, N.; Kawagoe, F.; Imamoto, T. Synlett 2007, 1561–1564. (f) Yoshida, K.; Shishikura, Y.; Takahashi, H.; Imamoto, T. Org. Lett. 2008, 10, 2777–2780.
(g) Yoshida, K.; Takahashi, H.; Imamoto, T. Chem.—Eur. J. 2008, 14, 8246–8261.

TABLE 2. Formation of Substituted Benzenes

^{*a*}Yield of less polar isomer 35%; yield of more polar isomer 62%. ^{*b*}Yield from more polar diol. ^{*c*}Yield from less polar diol. ^{*d*}Yield of less polar isomer 64%; yield of more polar isomer 33%. ^{*f*}Yield of less polar isomer 64%; yield of more polar isomer 33%. ^{*f*}Yield of less polar isomer 64%; yield of more polar isomer 22%. ^{*g*}Corrected for recovered starting material. ^{*h*}Yield of less polar isomer 29%; yield of more polar isomer 69%. ^{*f*}Yield from more polar isomer of **55**.

oxidized to the corresponding 1,4-diketones with Jones reagent. Generally, Pt-C was used for the hydrogenation, but Pd-C was used for reduction of acetylenes 20^7 and olefins 25. Optimization of the triple bond reduction was

made, using **2** as a test substrate, the conditions and yields with several catalysts being as follows: 10% w/w Pd–C/THF, 47%; 20% w/w Pd(OH)₂/MeOH, 21%; 5% w/w Rh–Al₂O₃/EtOAc, 62%; Wilkinson's catalyst/PhH, 55%; PtO₂/MeOH, 23%, and 5% w/w Pt–C, MeOH, 75%.

In the series of entry 6, the second acetylide coupling affords a monoprotected diol (21) after hyrogenation, so that oxidation gives a monoketone (22), which was processed as described below. The cyclic diketone 26 of entry 7 was prepared by ring-closing metathesis of 24, mediated by Grubbs II catalyst⁸ at high dilution; the resulting olefinic diol 25 was a mixture of stereoisomers, but this is of no consequence as

⁽⁵⁾ For methods to prepare 1,4-diketones, see, for example: (a) Sudweeks,
W. B.; Broadbent, H. S. J. Org. Chem. 1975, 40, 1131–1136. (b) Einhorn, J.;
Soulier, J.-L.; Bacquet, C.; Lelandais, D. Can. J. Chem. 1983, 61, 584–587.
(c) Piancatelli, G.; D'Auria, M.; D'Onofrio, F. Synthesis 1994, 867–889.
(d) Rio, G.; Lecas-Nawrocka, A. Bull. Soc. Chim. France 1976, 317–326.
(e) Nimgirawath, S.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1976, 29, 339–356.
(f) Miyakoshi, T. Org. Prep. Proced. Int. 1989, 21, 659–704. (g) Miyashita, M.; Yanami, T.; Yoshikoshi, A. Org. Synth. 1981, 60, 117–120.

^{(6) (}a) Lemieux, R. U. U.S. Patent 2,725,392, 1955. (b) For a preparation of **23a**, see: Cao, X.; Yang, Y.; Wang, X. J. Chem. Soc., Perkin Trans. 1 **2002**, 2485–2489.

⁽⁷⁾ For protection of a benzylic carbon—oxygen bond against hydrogenolysis by silylation, see: Clive, D. L. J.; Wang, J. J. Org. Chem. 2004, 69, 2773–2784.

 $^{(8) \ [1,3-}Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene] dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium.$

the following steps of double bond hydrogenation and hydroxyl oxidation remove all centers of stereogenicity.

The ketones listed in Table 2 (column 1, entries 1-5, 8, and 9) were treated with an excess (8-16 mol per mol dione)of vinyllithium (made in situ from tetravinyltin/MeLi) to generate the expected 1,4-diols as isomer mixtures that were used without need for separation. Except for compound 54, where we used the Grubbs II catalyst, ring-closing metathesis of these diols (Table 2, column 2, entries 1-5, 8, and 9) with the Grubbs I catalyst (loading 2-20 mol %) in CH₂Cl₂ at room temperature served to generate the required cyclohexene diols, again as isomer mixtures. In some cases (31, 34, 37) the isomers could be separated easily by flash chromatography, but this is not necessary, and the mixtures were usually carried forward by heating in PhH with TsOH · H₂O to generate the benzene ring. The amount of acid used was varied from 0.3 to 1.5 mol per mol diol to evaluate the robustness of the protocol. The conditions for the aromatization by double dehydration were optimized using **31** as a test substrate. The less polar and the more polar diols of structure 31 were individually treated with p-TsOH·H₂O in DMSO at 85 °C; with MsCl, Et₃N, in THF at 85 °C; with POCl₃, pyridine at room temperature; and with p-TsOH·H₂O (1 equiv) in refluxing PhH. The last set of conditions gave nearly quantitative yields for both isomers, whereas the other conditions never gave yields above 58%. Likewise the two individual isomers of 34 gave quantitative yields of 35 with p-TsOH. H₂O (1 equiv) in refluxing PhH. With the carbohydrate 55 our standard conditions led to an appreciable amount of an inseparable byproduct, but POCl₃ in ice-cold pyridine⁹ was satisfactory. We noticed, in the preparation of 44, that partial aromatization occurred in the ring-closing metathesis step.

In the sequence of Table 2, entry 6, two different vinyl units were introduced by first using 2-propenyllithium and then removing the silyl group (Bu₄NF), oxidizing the liberated hydroxyl (Jones oxidation), and treating the resulting ketone with vinyllithium. For the ring-closing metathesis in this series ($45 \rightarrow 46$) we used the Grubbs II catalyst⁸ (25 mol %), as prior literature suggested¹⁰ it is more effective than the Grubbs I catalyst for construction of trisubstituted double bonds.

The example of Table 2, entry 7, illustrates formation of a tetrasubstituted double bond; consequently, after dehydration, a 1,2,3,4-tetrasubstituted benzene is produced. The metathesis step required the use of the Schrock catalyst¹¹ (two portions, each of 20 mol %) and a prolonged reaction time (2.5 days at 80 °C in PhH). Experiments with the Grubbs II and a Hoveda–Grubbs¹² catalyst did not work.

In most of the dehydration experiments, loss of water can in principle occur to give an endocyclic or an exocyclic double bond, and in the latter case, isomerization would afford the observed benzenoid. Using **34** as a test case, we performed the acid-mediated double dehydration with $TsOD \cdot D_2O$ and found that the disubstituted benzene produced contained some deuterium (mass spectrum), but the amount of incorporation must have been very small as the ¹H NMR spectrum of the final product failed to reveal incorporation of the isotope.

Our method for making *para*-disubstituted benzene can be used as a route to paracyclophanes, as illustrated by the preparation of [12]paracyclophane (53). In this connection, though, we noted a restriction on the size of the paracyclophane ring, as an attempt to make [8]paracyclophane was surprisingly thwarted at an early stage because ring closure of the appropriately olefinic alcohol (tetradeca-1,13-diene-3,12-diol) was unsuccessful, using Grubbs II catalyst (under high dilution). Similarly, we found that the diol 57 did not undergo ring-closing metathesis with Grubbs I, Grubbs II, or Schrock catalysts, and we do not know if this should be attributed to unfavorable steric or conformational factors or the presence of multiple coordination sites. In connection with the carbohydrate series (Table 2, entry 9), it should be mentioned that a number of carbohydrates bearing a C5-aryl unit have potentially important medicinal properties as examples are known that suggest use for control of diabetes¹³ by inhibiting sodium-dependent glucose cotransporter 214 and thereby increasing urinary excretion of glucose. The present route offers an approach to the preparation of C5aryl sugars starting from an intact sugar; conventional methods¹⁵ usually involve early introduction of the aromatic unit followed by assembly of the pyranose ring (often by Diels-Alder reaction with a Danishefsky diene^{15a-c}) or addition of a carbanion to a dialdehydofuranose, followed by ring expansion to the pyranose system.^{16,17}

Conclusion

Many methods are available for making 1,4-diketones, and the present route links those well-established procedures to the construction of substituted benzene rings. In particular, aldehydes (and their synthetic equivalents) are easily

(17) For a route via sugar-derived acetylenes, see: Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121–1124.

⁽⁹⁾ Dauben, W. G.; Boswell, G. A. J. Am. Chem. Soc. 1961, 83, 5003–5005.

⁽¹⁰⁾ Cf. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. **1999**, *1*, 953–956.

^{(11) 6-}Diisopropylphenylimidoneophylidene molybdenum(VI)bis(hexafluoro-*tert*-butoxide).

⁽¹²⁾ Grela, K.; Harutyunyan, S.; Michrowska, A *Angew. Chem., Int. Ed.* **2002**, *41*, 4038–4040. We used the nitro variant (compound **9** in this reference).

⁽¹³⁾ Goodwin, N. C.; Mabon, R.; Harrison, B. A.; Shadoan, M. K.; Almstead, Z. Y.; Xie, Y.; Healy, J.; Buhring, L. M.; DaCosta, C. M.; Bardenhagen, J.; Mseeh, F.; Liu, Q.; Amr Nouraldeen, A.; Wilson, A. G. E.; Kimball, S. D.; Powell, D. R.; Rawlins, D. B. J. Med. Chem. 2009, 52, 6201–6204.

⁽¹⁴⁾ Jabbour, S. A.; Goldstein, B. J. Int. J. Clin. Pract. 2008, 62, 1279-1284.

⁽¹⁵⁾ See, for example: (a) Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc. 1986, 108, 7060-7067. (b) Berkowitz, D. B.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1992, 114, 4518-4529. (c) Helliwell, M.; Phillips, I. M.; Pritchard, R. G.; Stoodley, R. J. Tetrahedron Lett. 1999, 40, 8651-8655. and references therein. (d) Hauser, F. M.; Ganguly, D. J. Org. Chem. 2000, 65, 1842-1849. (e) Cheng, G.; Fan, R.; Hernández-Torres, J. M.; Boulineau, F. P.; Wei, A. Org. Lett. 2007, 9, 4849-4852.

^{(16) (}a) Harrison, B. A.; Kimball, S. D.; Mabon, R.; Rawlins, D. B. WO 2008/042688A2, 2008. (b) Goodwin, N.; Harrison, B. A.; Kimball, S. D.; Mabon, R.; Rawlins, D. B. WO 2008/109591A1, 2008. (c) Mincher, D. J.; Shaw, G. J. Chem. Soc., Perkin Trans. 1 1984, 1279–1282. (d) Inch. T. D.; Ley, R. V.; Rich, P. J. Chem. Soc. C 1968, 1683–1692. (e) Bruns, R.; Wernicke, A.; Köll, P. Tetrahedron 1999, 55, 9793–9800. (f) Popsavin, V.; Benedeković, G.; Srećo, B.; Popsavin, M.; Francuz, J.; Kojić, V.; Bogdanović, G. Org. Lett. 2007, 9, 4235–4238. (g) Prakash, K. R. C.; Rao, S. P. Synlett 1993, 123–124. (h) For a route via a dialdehydofuranose and a derived epoxide, see: Kilaas, L.; Anthonsen, T. Acta Chem. Scand. 1992, 46, 994–999.

converted into 1,4-diketones and so C-6 of hexoses can be incorporated into the benzene structure. Application of this approach to readily available carbohydrates may be useful in preparing medically important compounds such as inhibitors of sodium glucose cotransporter type 2 that are of interest for the treatment of diabetes.^{13,14}

Experimental Section

5-Phenylpent-1-yn-3-ol (1)¹⁸. K₂CO₃ (1.459 g, 28.24 mmol) was added to a stirred and cooled (0 °C) solution of 5-phenyl-1-(trimethylsilyl)pent-1-yn-3-ol¹⁸ (1.459 g, 6.276 mmol) in dry MeOH (60 mL). The ice bath was left in place but not recharged, and stirring was continued for 13 h. The mixture was evaporated, and the residue was partitioned between water and Et₂O. The aqueous phase was extracted with Et₂O, and the combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel $(2.8 \times 21 \text{ cm})$, using 20% EtOAc-petroleum ether, gave 1 (0.9515 g, 94%) as an oil: FTIR (CH₂Cl₂, microscope) 3292, 3063, 3027, 2927, 2863, 2115, 1603, 1496 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.79–1.93 (br s, 1 H), 2.00–2.12 (m, 2 H), 2.50 (d, J = 2.2 Hz, 1 H), 2.82 (t, J = 7.9 Hz, 2 H), 4.38 (td, J = 12.5, 1.9 Hz, 1 H), 7.19–7.24 (m, 3 H), 7.28–7.33 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 31.2 (t), 39.1 (t), 61.6 (d), 73.3 (s), 84.6 (d), 126.1 (d), 128.47 (d), 128.48 (d), 141.1 (s); exact mass m/z calcd for C₁₁H₁₂AgO (M + Ag) 266.9934, found 266.9933.

1,8-Diphenyloct-4-yne-3,6-diol (2)¹⁹. BuLi (2.5 M in hexane, 2.20 mL, 5.49 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 1 (0.4000 g, 2.497 mmol) in dry THF (20 mL). After 1.5 h, freshly distilled hydrocinnamaldehyde (0.43 mL, 3.25 mmol) was added dropwise. The cold bath was removed, and stirring was continued for 4 h. The mixture was cooled to 0 °C and quenched with hydrochloric acid (1.0 N, 20 mL). The organic solvent was evaporated, and the resulting aqueous mixture was extracted with Et2O. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (4×25 cm), using EtOAcpetroleum ether mixtures from 25% to 60% EtOAc, gave 2 (0.6376 g, 86%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CHCl₃, microscope) 3331, 3062, 3026, 2948, 2927, 2862, 1947, 1871, 1804, 1603, 1496 cm⁻¹; ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 2.07 - 2.13 \text{ (m, 6 H)}, 2.81 \text{ (t, } J = 7.9 \text{ Hz}, 4 \text{ (m, 6 H)})$ H), 4.42 (t, J = 6.8 Hz, 2 H), 7.18–7.24 (m, 6 H), 7.28–7.32 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 31.41 (t), 31.42 (t), 39.1 (t), 61.7 (d), 86.08 (s), 86.09 (s), 126.1 (d), 128.47 (d), 128.50 (d), 141.1 (s); exact mass m/z calcd for $C_{20}H_{22}NaO_2$ (M + Na) 317.1509, found 317.1509.

1,8-Diphenyloctane-3,6-diol (3). Pt-C (5% w/w, ca. 5 mg) was added to a solution of 2 (0.0377 g, 0.128 mmol) in MeOH (5 mL), and the mixture was stirred under H₂ (doubled balloon) for 18 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(0.7 \times 16 \text{ cm})$, using EtOAc-petroleum ether mixtures from 20% to 50% EtOAc, gave 3 (0.0286 g, 75%) as an oil that slowly solidified: mp 83-88 °C; FTIR (CH₂Cl₂, microscope) 3323, 3243, 3022, 2937, 2913, 2861, 1942, 1495, ¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.50–1.61 (m, 2 H) 1454 cm⁻ 1.61–1.74 (m, 2 H), 1.75–1.84 (m, 4 H), 2.15–2.60 (br s, 2 H), 2.63-2.73 (m, 2 H), 2.74-2.84 (m, 2 H), 3.62-3.72 (m, 2 H), 7.17-7.23 (m, 6 H), 7.26-7.32 (m, 4 H); ¹³C NMR (CDCl₃, 100 MHz) δ 31.1 (t), 33.3 (t), 34.1 (t), 39.1 (t), 71.3 (d), 71.6 (d), 125.8 (d), 128.39 (d), 128.41 (d), 142.0 (s) (two signals not

observed due to overlap); exact mass m/z calcd for C₂₀H₂₆NaO₂ (M + Na) 321.1825, found 321.1821.

1,8-Diphenyloctane-3,6-dione (4). Jones reagent²⁰ (7.0 M in acetone, 0.54 mL, 3.8 mmol) was added dropwise to a stirred and cooled (0 °C) solution of 3 (0.1620 g, 0.5428 mmol) in acetone (15 mL). After 30 min, the orange mixture was quenched with MeOH (15 mL), and stirring was continued for 30 min, by which time the mixture had become dark green. The mixture was diluted with EtOAc (30 mL), washed with water and brine, dried (Na_2SO_4) , and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 16 \text{ cm})$, using EtOAc-petroleum ether mixtures from 10% to 15% EtOAc, gave 4 (0.1448 g, 90%) as an oil: FTIR (CH₂Cl₂, cast microscope) 3062, 3027, 2925, 1711, 1603, 1496 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.68 (s, 4 H), 2.81 (apparent t, J = 7.7 Hz, 4 H), 2.91 (t, J = 7.2 Hz, 4 H), 7.17–7.22 (m, 6 H), 7.27–7.31 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 29.8 (t), 36.2 (t), 44.3 (t), 126.1 (d), 128.3 (d), 128.5 (d), 141.0 (s), 208.4 (s); exact mass m/z calcd for $C_{20}H_{22}O_2$ 295.1693, found 295.1696.

1-Phenylundec-4-yne-3,6-diol (5). BuLi (2.5 M in hexane, 0.87 mL, 2.2 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 1 (0.1576 g, 0.9837 mmol) in dry THF (12 mL). After 0.5 h, freshly distilled n-hexanal (0.23 mL, 2.0 mmol) was added dropwise. The cold bath was removed, and stirring was continued for 36 h. The mixture was cooled to 0 °C and quenched with hydrochloric acid (1.0 N, 15 mL). The organic solvent was evaporated, and the resulting aqueous mixture was extracted with Et₂O. The combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.8 \times 21 \text{ cm})$, using EtOAcpetroleum ether mixtures from 20% to 40% EtOAc, gave 5 (0.2321 g, 90%) as an oil: FTIR (CH₂Cl₂, cast microscope) 3322, 3027, 2953, 2931, 2860, 1943, 1873, 1803, 1745, 1604, 1496, 1455 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.90 (t, J = 7.0 Hz, 3 H), 1.29-1.38 (m, 4 H), 1.41-1.51 (m, 2 H), 1.63-1.78 (m, 2 H), 1.95-2.11 (m, 2 H), 2.12-2.22 (br s, 1 H), 2.22-2.36 (br s, 1 H), 2.79 (t, J = 7.8 Hz, 2 H), 4.41 (t, J = 6.1 Hz, 2 H), 7.17-7.23 (m, 3 H), 7.27-7.32 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.0 (q), 22.6 (t), 24.9 (t), 31.39 (t), 31.43 (t), 37.7 (t), 39.1 (t), 61.7 (d), 62.5 (d), 85.6 (s), 86.4 (s), 126.0 (d), 128.4 (d), 128.5 (d), 141.2 (s); exact mass m/z calcd for C₁₇H₂₄NaO₂ (M+Na) 283.1669, found 283.1670.

1-Phenylundecane-3,6-diol (6). Pt-C (5% w/w, ca. 3 mg) was added to a solution of 5 (0.0274 g, 0.1052 mmol) in MeOH (5 mL), and the mixture was stirred under H₂ (doubled balloon) for 1 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(0.7 \times 16 \text{ cm})$, using EtOAc-petroleum ether mixtures from 20% to 50% EtOAc, gave 6 (0.0182 g, 65%) as a solid that was a mixture of diastereoisomers $({}^{13}CNMR)$: mp 56-62 °C; FTIR (CH₂Cl₂, cast microscope) 3215, 3086, 3063, 3027, 2955, 2937, 2920, 2871, 2854, 1942, 1496, 1453 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, J = 6.7 Hz, 3 H), 1.24-1.38 (m, 6 H), 1.38–1.60 (m, 4 H), 1.63–1.74 (m, 2 H), 1.77–1.83 (m, 2 H), 1.85-2.27 (br s, 2 H), 2.69 (apparent dt, J = 13.9, 8.1 Hz, 1 H), 2.80 (dt, J = 14.2, 7.5 Hz, 1 H), 3.59–3.73 (m, 2 H), 7.17–7.24 (3 H), 7.27–7.32 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.0 (q), 22.6 (t), 25.38 (t), 25.39 (t), 31.9 (t), 32.2 (t), 33.2 (t), 33.5 (t), 33.9 (t), 34.2 (t), 37.5 (t), 37.8 (t), 39.1 (t), 39.4 (t), 71.3 (d), 71.6 (d), 72.0 (d), 72.3 (d), 125.8 (d), 128.4 (d), 129.2 (d), 142.1 (s); exact mass m/z calcd for C₁₇H₂₈NaO₂ 287.1982, found 287.1985.

1-Phenylundecane-3,6-dione (7). Jones reagent^{20} (7.0 M in acetone, 0.07 mL, 0.46 mmol) was added dropwise to a stirred and cooled (0 °C) solution of **6** (0.0175 g, 0.0662 mmol) in

⁽¹⁸⁾ Matsuda, F.; Kawatsura, M.; Hosaka, K.-i.; Shirahama, H. Chem.— Eur. J. 1999, 5, 3252–3259.

⁽¹⁹⁾ Adjé, N.; Breuilles, P; Uguen, D. Tetrahedron Lett. 1993, 34, 4631–4634.

⁽²⁰⁾ Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39–45.

acetone (5 mL). After 10 min, the orange mixture was quenched with MeOH (5 mL), and stirring was continued for 30 min, by which time the mixture had become dark green. The mixture was diluted with EtOAc (20 mL), washed with water and brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel (0.7 × 16 cm), using EtOAc-petroleum ether mixtures from 15% to 25% EtOAc, gave 7 (0.0162 g, 94%) as an oil: FTIR (CH₂Cl₂, cast microscope) 3028, 2956, 2931, 2872, 1712, 1604, 1454 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, J = 7.0 Hz, 3 H), 1.23–1.37 (m, 4 H), 1.59 (quintet, J = 7.6 Hz, 2 H), 2.45 (t, J = 7.4 Hz, 2 H), 2.64–2.71 (m, 4 H), 2.80 (apparent t, J = 7.9 Hz, 2 H), 2.91 (t, J = 8.0 Hz, 2 H), 7.17–7.21 (m, 3 H), 7.26–7.30 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 13.9 (q), 22.4 (t), 23.5 (t), 23.5 (t), 29.7 (t), 31.4 (t), 36.0 (t), 36.2 (t), 42.8 (t), 44.3 (t), 126.1 (d), 128.3 (d), 128.5 (d), 141.0 (s), 208.5 (s), 209.7 (s); exact mass m/z calcd for C₁₇H₂₄NaO₂ (M + Na) 283.1669, found 283.1671.

1-(1-Adamantyl)-6-phenylhex-2-yne-1,4-diol (8). BuLi (2.5 M in hexane, 0.26 mL, 0.65 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 1 (0.0472 g, 0.295 mmol) in dry THF (10 mL). After 1.5 h, 1-adamantanecarboxaldehyde (0.0414 g, 0.252 mmol) in THF (2 mL plus 2 mL as a rinse) was added dropwise, producing an orange solution. The cold bath was left in place but not recharged, and stirring was continued for 18.5 h. The mixture was cooled to 0 °C and quenched with hydrochloric acid (1.0 N, 6 mL). The organic solvent was evaporated, water (10 mL) was added, and the mixture was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 15 \text{ cm})$, using EtOAc-petroleum ether mixtures from 20% to 40% EtOAc, gave **8** (0.0743 g, 91%) as a semisolid mixture of diastereoisomers (13 C NMR): FTIR (CH₂Cl₂, cast microscope) 3350, 3026, 2905, 2848, 1722, 1604, 1453 cm⁻¹ ¹H NMR (CDCl₃, 500 MHz) δ 1.58–1.77 (m, 12 H), 1.99–2.11 (m, 5 H), 2.11-2.72 (br s, 2 H), 2.82 (t, J = 7.8 Hz, 2 H), 3.93 (dd, J)J = 5.9, 1.4 Hz, 1 H), 4.42 - 4.47 (m, 1 H), 7.19 - 7.25 (m, 3 H),7.28-7.32 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 28.2 (d), 31.53 (s), 31.54 (s), 37.1 (t), 37.3 (t), 37.4 (t), 37.8 (t), 39.37 (t), 39.39 (t), 61.8 (d), 71.52 (d), 71.53 (d), 84.25 (s), 84.27 (s), 87.15 (s), 87.17 (s), 126.0 (d), 128.46 (d), 128.50 (d), 141.295 (s), 141.303 (s); exact mass m/z calcd for C₂₂H₂₈NaO₂ (M + Na) 347.1982, found 347.1981.

1-(1-Adamantyl)-6-phenylhexane-1,4-diol (9). Rh-Al₂O3 (5% w/w, ca. 8 mg) was added to a solution of 8 (0.023 g, 0.071 mmol) in MeOH (3 mL) and the mixture was stirred under H₂ (thick-walled balloon) for 24 h. At this point there appeared to have been no reaction (TLC, ¹H NMR) and so the mixture was filtered through Celite, using EtOAc as a rinse. The solvent was evaporated, and the residue was kept under oil pump vacuum. Pt-C (20% w/w, ca. 6.5 mg) was added to a solution of the recovered 8 in MeOH (3 mL) and the mixture was stirred under H₂ (balloon). After 30 min the mixture was filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(1.4 \times 15 \text{ cm})$, using EtOAc-petroleum ether mixtures from 20% to 40% EtOAc, gave 9 (0.0184 g, 79%) as an oil that was a mixture of diastereoisomers (^{13}C NMR): FTIR (CH₂Cl₂, cast) 3351, 3026, 2905, 2849, 2677, 1743, 1603, 1452 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.25– 1.42 (m, 2 H), 1.48-1.83 (m, 16 H), 2.00 (apparent s, 3 H), 2.00-2.42 (br s, 2 H), 2.64-2.74 (m, 1 H), 2.76-2.85 (m, 1 H), 3.04 (apparent d, J = 9 Hz, 1 H), 3.61–3.75 (m, 1 H), 7.16– 7.23 (m, 3 H), 7.26–7.31 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.7 (t), 26.8 (t), 28.3 (d), 32.17 (s), 32.19 (s), 35.0 (t), 35.4 (t), 37.2 (t), 37.93 (t), 37.96 (t), 39.1 (t), 39.6 (t), 71.1 (d), 71.8 (d), 80.4 (d), 80.7 (d), 125.75 (d), 125.77 (d), 128.37 (d), 128.41 (d), 142.20 (s), 142.23 (s); exact mass m/z calcd for C₂₂H₃₂NaO₂ (M + Na) 351.2295, found 351.2297.

1-(1-Adamantyl)-6-phenylhexane-1,4-dione (10). Jones reagent²⁰ (7.0 M in acetone, 0.052 mL, 0.362 mmol) was added dropwise to a stirred and cooled (0 °C) solution of 9 (0.0170 g, 0.0518 mmol) in acetone (3 mL). After 20 min, the orange mixture was quenched with MeOH (3 mL), and stirring was continued for 30 min, by which time the mixture had become dark green. The mixture was diluted with EtOAc (20 mL), washed with water and brine, dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (0.7 × 15 cm), using 10% EtOAc-petroleum ether, gave 10 (0.0161 g, 95%) as an oil: FTIR (CH₂Cl₂, cast) 3027, 2905, 2851, 1716, 1698, 1453 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.68-1.79 (m, 6 H), 1.85 (d, J = 2.7 Hz, 6 H), 2.05 (apparent s, 3 H), 2.64 (apparent t, J = 6.5 Hz, 2 H), 2.75 (apparent t, J = 6.1 Hz, 2 H), 2.82 (apparent t, J = 7.9 Hz, 2 H), 2.91 (apparent t, J = 7.1 Hz, 2 H), 7.17-7.21 (m, 3 H), 7.26-7.30 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 28.0 (d), 29.7 (t), 30.1 (t), 36.1 (t), 36.6 (t), 38.4 (s), 44.4 (t) 46.2 (t), 126.0 (d), 128.3 (d), 128.5 (d), 141.1 (s); exact mass m/zcalcd for $C_{22}H_{28}NaO_2$ (M + Na) 347.1982, found 347.1988.

1-(1-Adamantyl)prop-2-yn-1-ol (11). (a) 1-(1-Adamantyl)-3-(trimethylsilyl)prop-2-yn-1-ol (11a)²¹. BuLi (2.5 M in hexane, 0.32 mL, 0.81 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of trimethylsilylacetylene (0.12 mL, 0.81 mmol) in dry THF (8 mL). After 55 min, 1-adamantanecarboxaldehyde (0.1332 g, 0.8110 mmol) in THF (1.5 mL plus 1.5 mL as a rinse) was added dropwise by cannula. The cold bath was removed and, after 2.5 h, the mixture was recooled to 0 °C, quenched with saturated aqueous NH₄Cl (10 mL) and extracted with EtOAc. The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.8 \times 20 \text{ cm})$, using EtOAc-petroleum ether mixtures from 5% to 15% EtOAc, gave 11a (0.1888 g, 88%) as an oil: FTIR (CH₂Cl₂, cast) 3390, 3309, 2906, 2849, 2676, 2658, 2170, 1718, 1452 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.98 (s, 9 H), 1.55–1.75 (m, 12 H), 1.76 (s, 1 H), 1.98–2.04 (br m, 3 H), 3.83 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ -0.03 (q), 28.2 (d), 36.7 (s), 37.1 (t), 37.7 (t), 71.9 (d), 90.7 (s), 104.9 (s); exact mass m/z calcd for C₁₆H₂₆NaOSi (M + Na) 285.1645, found 285.1648.

(b) 1-(1-Adamantyl)prop-2-yn-1-ol (11)²¹. K₂CO₃ (0.5528 g, 4.000 mmol) was added to a stirred and cooled (0 °C) solution of 11a (0.1765 g, 0.6725 mmol) in dry MeOH (8 mL). The ice bath was left in place but not recharged, and stirring was continued for 18 h. The mixture was evaporated, and the residue was partitioned between water and Et₂O. The aqueous phase was extracted with Et₂O, and the combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.6×16 cm), using 10% EtOAc-petroleum ether, gave 11 (0.1167 g, 91%) as an oil: FTIR (CH₂Cl₂, cast microscope) 3278, 2902, 2848, 2674, 2656, 2111, 1449 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.56–1.76 (m, 12 H), 1.83 (s, 1 H), 1.98– 2.04 (m, 3 H), 2.46 (d, J = 2.2 Hz, 1 H), 3.87 (d, J = 2.2 Hz, 1 H);¹³C NMR (CDCl₃, 100 MHz) δ 28.2 (d), 37.0 (t), 37.6 (t), 71.4 (d), 74.2 (d), 82.9 (s); the molecular ion could not be detected and a satisfactory mass spectrum could not be obtained.

1,4-Bis(1-adamantyl)but-2-yne-1,4-diol (12). BuLi (2.5 M in hexane, 0.48 mL, 1.2 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of **11** (0.1071 g, 0.5401 mmol) in dry THF (10 mL). After 1 h, 1-adamantanecarboxaldehyde (0.0895 g, 0.5449 mmol) in THF (2 mL plus 2 mL as a rinse) was added dropwise. The cold bath was removed, and stirring was continued for 18 h. The mixture was cooled to 0 °C and quenched with hydrochloric acid (1.0 N, 10 mL). The organic solvent was evaporated, and the resulting aqueous mixture was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica

⁽²¹⁾ Cf. Bach, J.; Berenguer, R.; Garcia, J.; Loscertales, T.; Vilarrasa, J. J. Org. Chem. **1996**, 61, 9021–9025.

gel (4 × 25 cm), using EtOAc–petroleum ether mixtures from 5% to 40% EtOAc, gave **12** (0.1258 g, 65%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast microscope) 3285, 2899, 2846, 2679, 2657, 1742, 1451 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.60–1.68 (m, 14 H), 1.68–1.77 (m, 12 H), 2.05 (s, 6 H), 3.93 (s, 1 H), 3.94 (s, 1 H); ¹³C NMR (CDCl₃, 125 MHz) δ 28.2 (d), 37.1 (t), 37.4 (s), 37.5 (s), 37.81 (t), 37.83 (t), 71.6 (d), 71.7 (d), 85.2 (s), 85.3 (s); exact mass *m/z* calcd for C₂₄H₃₄NaO₂ (M + Na) 377.2451, found 377.2454.

1,4-Bis(1-adamantyl)butane-1,4-diol (13). Rh–Al₂O₃ (5% w/w, 0.0100 g) was added to a solution of 12 (0.0571 g, 0.161 mmol) in MeOH (5 mL) and the mixture was stirred under H₂ (doubled balloon) for 19 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(1.4 \times 15 \text{ cm})$, using EtOAc-petroleum ether mixtures from 5% to 20% EtOAc, gave 13 (0.0106 g, 18%) and recovered starting material 12 (18.4 mg, 0.052 mmol). Rh-Al₂O₃ (5% w/w, 0.0050 g) was added to a solution of the recovered starting material in MeOH (3 mL) and the mixture was stirred under H₂ (balloon). After 14 h, more Rh-Al₂O₃ (5% w/w, ca. 5 mg) was added and stirring under H₂ (doubled balloon) was continued for 7 h. The mixture was filtered through Celite using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(1.4 \times 16 \text{ cm})$, using EtOAcpetroleum ether mixtures from 5% to 20% EtOAc, gave 13 (0.0120 g, 21%), providing a combined yield of 39%. The product was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, microscope) 3376, 2901, 2848, 2657, 1638, 1449 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.36–1.48 (m, 2 H), 1.48–1.86 (m, 28 H), 2.00 (apparent s, 6 H), 3.03 (d, J = 10.1 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 27.5 (t), 27.6 (t), 28.3 (d), 36.7 (s), 36.8 (s), 37.3 (t), 37.99 (t), 38.03 (t), 80.4 (d), 80.6 (d); exact mass m/z calcd for C₂₄H₃₈NaO₂ (M + Na) 381.2764, found 381.2758.

1,4-Bis(1-adamantyl)butane-1,4-dione (14)²². Jones reagent²⁰ (7.0 M in acetone, 0.024 mL, 0.167 mmol) was added dropwise to a stirred and cooled (0 °C) solution of **13** (0.0200 g, 0.0558 mmol) in acetone (4 mL). After 45 min, the orange mixture was quenched with MeOH (1 mL), and stirring was continued for 30 min, by which time the mixture had become dark green. The mixture was diluted with EtOAc (20 mL), washed with water and brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel (1.4×16 cm), using EtOAc–petroleum ether mixtures from 2% to 10% EtOAc, gave **14** (0.0142 g, 71%) as an oil: FTIR (CH₂Cl₂, cast microscope) 2905, 2850, 2678, 2658, 1699, 1452 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.66–1.78 (m, 12 H), 1.85 (apparent d, *J* = 2.8 Hz, 12 H), 2.02–2.08 (m, 6 H), 2.71 (s, 4 H); ¹³C NMR (CDCl₃, 100 MHz) δ 28.0 (d), 29.9 (t), 36.6 (t), 38.4 (t), 46.2 (s), 214.5 (s); exact mass *m*/*z* calcd for C₂₄H₃₄NaO₂ (M + Na) 377.2451, found 377.2452.

1-Cycloheptylprop-2-yn-1-ol (15). (a) 1-Cycloheptyl-3-(trimethylsilyl)prop-2-yn-1-ol (15a). BuLi (2.5 M in hexane, 0.124 mL, 0.309 mmol) was added dropwise to a stirred and cooled $(-78 \text{ }^{\circ}\text{C})$ solution of trimethylsilylacetylene (0.044 mL, 0.309 mmol) in dry THF (3 mL). After 90 min, cycloheptanecarboxaldehyde (0.039 g, 0.309 mmol) in THF (1 mL plus 1 mL as a rinse) was added dropwise. The dry ice bath was replaced by an ice bath and, after 45 min, the ice bath was removed, and stirring was continued for 14 h. The mixture was guenched with a mixture of water (5 mL) and saturated aqueous NH₄Cl (5 mL) and extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 15 \text{ cm})$, using EtOAcpetroleum ether mixtures from 5% to 15% EtOAc, gave 15a (0.0569 g, 82%) as an oil: FTIR (CH₂Cl₂, microscope) 3344, 2924, 2855, 2172, 1460 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.95 (s, 9 H), 1.31–1.64 (m, 7 H), 1.68–1.79 (m, 3 H), 1.79–1.90 (m, 3 H), 2.18 (s, 1 H), 4.20 (d, J = 5.5 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz) $\delta - 0.1$ (q), 26.6 (t), 26.7 (t), 28.39 (t), 28.42 (t), 29.5 (t), 45.5 (d), 67.9 (d), 89.9 (s), 106.1 (s); exact mass m/z calcd for C₁₃H₂₄NaOSi (M + Na) 247.1489, found 247.1488.

(b) 1-Cycloheptylprop-2-yn-1-ol (15). K₂CO₃ (0.2697 g, 1.952 mmol) was added to a stirred and cooled (0 °C) solution of 15a (0.0365 g, 0.1626 mmol) in dry MeOH (5 mL). The ice bath we left in place but not recharged, and stirring was continued for 13 h. The mixture was evaporated, and the residue was partitioned between water and Et₂O. The aqueous phase was extracted with Et₂O, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 7 \text{ cm})$, using 20% EtOAc-petroleum ether, gave 15 (0.0226 g, 91%) as an oil: FTIR (CH₂Cl₂, microscope) 3308, 2923, 2856, 2688, 2114, 1461 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) & 1.30-1.65 (m, 8 H), 1.65-1.95 (m, 6 H), 2.43 (apparent d, J = 2.2 Hz, 1 H), 4.22 (dd, J = 5.4, 2.1 Hz, 1 H); 13 C NMR (CDCl₃, 125 MHz) δ 26.66 (t), 26.71 (t), 28.24 (t), 28.29 (t), 29.4 (t), 29.8 (t), 45.4 (d), 67.4 (d), 73.3 (d), 84.2 (s); exact mass m/z calcd for C₁₀H₁₆O 152.1201, found 152.1203.

1-Cycloheptyl-4-cyclohexylbut-2-yne-1,4-diol (16). BuLi (2.5 M in hexane, 0.527 mL, 1.32 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 15 (0.080 g, 0.527 mmol) in dry THF (10 mL). After 1 h, cyclohexanecarboxaldehyde (0.096 mL, 0.79 mmol) in THF (2 mL plus 2 mL as a rinse) was added dropwise by cannula. Stirring at -78 °C was continued for 45 min. The cold bath was left in place but not recharged, and stirring was continued for 10.5 h. The mixture was cooled to 0 °C and quenched with hydrochloric acid (1.0 N, 10 mL). The organic solvents were evaporated, water (10 mL) was added, and the mixture was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 19 \text{ cm})$, using EtOAc-petroleum ether mixtures from 5% to 40% EtOAc, gave 16 (0.1120 g, 80%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, microscope) 3327, 2924, 2853, 2673, 1450 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.01-1.31 (m, 6 H), 1.31-1.64 (m, 8 H), 1.65-1.92 (m, 12 H), 4.20 (apparent t, J = 5.0 Hz, 1 H), 4.27 (apparent br s, 1 H); 13 C NMR (CDCl₃, 125 MHz) δ 25.8 (t), 25.9 (t), 26.4 (t), 26.70 (t), 26.74 (t), 28.0 (t), 28.1 (t), 28.28 (t), 28.33 (t), 28.34 (t), 29.5 (t), 29.97 (t), 30.00 (t), 67.2 (t), 67.5 (t), 85.29 (s), 85.31 (s), 85.91 (s), 85.94 (s); exact mass m/z calcd for $C_{17}H_{28}NaO_2$ (M + Na) 287.1982, found 287.1982.

1-Cycloheptyl-4-cyclohexylbutane-1,4-diol (17). Pt-C (10% w/w, ca. 0.020 g) was added to a solution of 16 (0.102 g, 0.384 mmol) in MeOH (6 mL), and the mixture was stirred under H_2 (thick-walled balloon) for 12 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(1.4 \times 20 \text{ cm})$, using EtOAc-petroleum ether mixtures from 5% to 40% EtOAc, gave 17 (0.0761 g, 74%) as an oil that was a mixture of dia-stereoisomers (¹³C NMR): FTIR (CH₂Cl₂, microscope) 3299, 2920, 2852, 2696, 1460, 1448 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.96-1.40 (m, 8 H), 1.40-1.63 (m, 10 H), 1.63-1.88 (m, 10 H), 2.35 (s, 2 H), 3.43-3.14 (m, 1 H), 3.45-3.58 (m, 1 H); ¹³C NMR (acetone- d_6 , 125 MHz) δ 26.97 (t), 26.99 (t), 27.1 (t), 27.3 (t), 27.67 (t), 27.69 (t), 27.97 (t), 28.00 (t), 28.70 (t), 28.72 (t), 29.1 (t), 29.3 (t), 29.4 (t), 29.6 (t), 29.7 (t), 29.8 (t), 29.9 (t), 30.0 (t), 30.2 (t), 31.15 (t), 31.20 (t), 31.9 (t), 32.0 (t), 44.7 (d), 44.9 (d), 46.2 (d), 46.3 (d), 76.0 (d), 76.1 (d), 76.7 (d), 76.8 (d); exact mass m/z calcd for C₁₇H₃₂NaO₂ (M + Na) 291.2295, found 291.2294.

1-Cycloheptyl-4-cyclohexylbutane-1,4-dione (18). Jones reagent²⁰ (7.0 M in acetone, 0.17 mL, 1.2 mmol) was added dropwise to a stirred and cooled (0 °C) solution of **17** (0.0346 g, 0.129 mmol) in acetone (10 mL). After 1.5 h, an additional portion of Jones reagent (7.0 M in acetone, 0.10 mL, 0.70 mmol) was added, and after a further 5 min, the mixture was quenched with MeOH (15 mL). Stirring was continued for 30 min, by which

⁽²²⁾ Maas, G.; Fronda, A. J. Organomet. Chem. 1990, 398, 229-239.

time the mixture had become dark green. The mixture was diluted with EtOAc (25 mL), washed with water and brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel (0.7 × 16 cm), using EtOAc–petroleum ether mixtures from 5% to 15% EtOAc, gave **18** (0.0239 g, 70%) as an oil: FTIR (CH₂Cl₂, microscope) 2928, 2855, 2668, 1707, 1450 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.10–1.43 (m, 6 H), 1.43–1.65 (m, 6 H), 1.65–1.83 (m, 6 H), 1.83–1.94 (m, 4 H), 2.32–2.44 (m, 1 H), 2.52–2.62 (m, 1 H), 2.66–2.75 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.7 (t), 25.9 (t), 26.7 (t), 28.3 (t), 28.5 (t), 30.0 (t), 34.1 (t), 34.2 (t), 50.8 (d), 52.4 (d), 212.8 (s), 213.1 (s); exact mass *m*/*z* calcd for C₁₇H₂₈O₂ 264.2089, found 264.2090.

Tris(1-methylethyl)[(5-phenylpent-1-yn-3-yl)oxy]silane (19). NaH (0.4543 g, 18.93 mmol) was added quickly to a stirred and cooled (0 °C) solution of 1a (1.466 g, 6.310 mmol) in dry THF (50 mL). After 15 min, i-Pr₃SiCl (4.05 mL, 18.9 mmol) was added dropwise. The cold bath was left in place but not recharged, and stirring was continued for 12 h. The mixture was cooled to 0 °C and quenched with saturated aqueous NH₄Cl (40 mL). The aqueous phase was extracted with Et2O, and the combined organic extracts were dried (Na_2SO_4) and evaporated. The residue (19a) was kept under oil pump vacuum for several hours. Oven-dried K₂CO₃ (2.617 g, 18.94 mmol) was added to a stirred and cooled (0 °C) solution of crude 19a in dry MeOH (38 mL). The cooling bath was left in place but not recharged, and stirring was continued for 17 h. The mixture was evaporated, and the residue was partitioned between Et2O and water. The aqueous phase was extracted with Et₂O, and the combined organic extracts were washed with brine, dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel $(5 \times 22 \text{ cm})$, using EtOAc-petroleum mixtures from 1% to 5% EtOAc, gave 19 (1.927 g, 96% over two steps) as an oil: FTIR (CH₂Cl₂, cast microscope) 3309, 3028, 2944, 2891, 2867, 1463, 1454 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.06–1.18 (m, 21 H), 1.97-2.09 (m, 2 H), 2.44 (d, J = 2.1 Hz, 1 H), 2.76-2.89 (m, 2 H), 4.50 (ddd, J = 6.7, 5.6, 2.1 Hz, 1 H), 7.17–7.23 (m, 3 H), 7.27-7.31 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 12.2 (d), 18.0 (q), 31.1 (t), 40.5 (t), 62.3 (d), 72.5 (d), 85.3 (d), 125.8 (d), 128.4 (d), 128.5 (d), 141.8 (s); exact mass m/z calcd for C₂₀H₃₂NaOSi (M + Na) 339.2115, found 339.2118.

6-[[Tris(1-methylethyl)silyl]oxy]-1,8-diphenyloct-4-yn-3-ol (20). BuLi (2.5 M in hexane, 1.67 mL, 4.17 mmol) was added dropwise over 3 min to a stirred and cooled (-78 °C) solution of 19 (1.0153 g, 3.207 mmol) in dry THF (50 mL). After 35 min, freshly distilled hydrocinnamaldehyde (0.68 mL, 5.1 mmol) was added dropwise over 3 min. The cold bath was left in place but not recharged, and stirring was continued for 7.5 h. The mixture was cooled to 0 °C and quenched with hydrochloric acid (1.0 N, 50 mL). The organic solvent was evaporated, and the resulting aqueous phase was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(4 \times 22 \text{ cm})$, using EtOAcpetroleum ether mixtures from 10% to 50% EtOAc, gave 20 (1.4457 g, 100%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast film) 3361, 3063, 3027, 2944, 2866, 1604, 1496, 1455 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.07–1.19 (m, 21 H), 1.64–1.72 (br s, 1 H), 1.98–2.11 (m, 4 H), 2.78–2.89 (m, 4 H), 4.42 (t, J = 6.3 Hz, 1 H), 4.58 (td, J = 5.8, 1.6 Hz, 1 H), 7.18–7.24 (m, 6 H), 7.28–7.33 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 12.3 (d), 18.1 (q), 31.27 (t), 31.29 (t), 31.39 (t), 31.41 (t), 39.18 (t), 39.23 (t), 40.46 (t), 40.49 (t), 61.9 (d), 62.5 (d), 85.06 (s), 85.08 (s), 86.86 (s), 86.88 (s), 125.8 (d), 126.0 (d), 128.4 (d), 128.45 (d), 128.47 (d), 128.48 (d), 141.3 (s), 141.8 (s); exact mass m/z calcd for C₂₉H₄₂NaO₂Si (M + Na) 473.2846, found 473.2846.

6-[[Tris(1-methylethyl)silyl]oxy]-1,8-diphenyloctan-3-ol (21). Pd-C (5% w/w, ca. 20 mg) was added to a solution of **20** (0.1035 g, 0.2296 mmol) in EtOAc (4 mL), and the mixture was stirred under H₂ (thick-walled balloon) for 14 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel $(1.4 \times 17 \text{ cm})$, using EtOAc-petroleum ether mixtures from 5% to 20% EtOAc, gave 21 (0.0704 g, 67%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, neat film microscope) 3370, 3086, 3063, 3027, 2943, 2891, 2866, 1941, 1869, 1801, 1604, 1496 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.06-1.08 (m, 21 H), 1.47-1.98 (m, 8 H), 2.21-2.50 (br s, 1 H), 2.55-2.73 (m, 3 H), 2.77-2.84 (m, 1 H), 3.57-3.67 (m, 1 H), 3.90-3.97 (m, 1 H), 7.16-7.23 (m, 6 H), 7.26-7.31 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 12.6 (d), 12.7 (d), 18.18 (q), 18.19 (q), 18.22 (q), 31.45 (t), 31.50 (t), 31.9 (t), 32.1 (t), 32.3 (t), 32.5 (t), 32.6 (t), 37.8 (t), 38.2 (t), 39.1 (t), 39.2 (t), 71.37 (d), 71.42 (d), 71.8 (d), 71.9 (d), 125.72 (d), 125.73 (d), 125.76 (d), 125.80 (d), 128.29 (d), 128.30 (d), 128.36 (d), 128.40 (d), 128.5 (d), 142.1 (s), 142.26 (s), 142.29 (s), 142.4 (s); exact mass m/z calcd for $C_{29}H_{46}NaO_2Si (M + Na) 477.3159$, found 477.3161.

6-[[Tris(1-methylethyl)silyl]oxy]-1,8-diphenyloctan-3-one (22). Jones reagent²⁰ (7.0 M in acetone, 0.04 mL, 0.12 mmol) was added dropwise to a stirred and cooled (0 °C) solution of 21 (0.0532 g, 0.117 mmol) in acetone (4 mL). After 10 min, the orange mixture was quenched with MeOH (5 mL), and stirring was continued for 30 min, by which time the mixture had become dark green. The mixture was diluted with EtOAc (15 mL), washed with water and brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 17 \text{ cm})$, using EtOAc-petroleum ether mixtures from 2% to 10% EtOAc, gave 22 (0.0516 g, 97%) as an oil: FTIR (CH₂Cl₂, neat film microscope) 3086, 3063, 3027, 2943, 2892, 2866, 1942, 1869, 1800, 1717, 1604, 1497 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.06 (apparent s, 21 H), 1.72–1.84 (m, 3 H), 1.85–1.93 (m, 1 H), 2.45-2.57 (m, 2 H), 2.58-2.69 (m, 2 H), 2.76 (t, J=7.9 Hz, 2 H), 2.92 (t, J = 7.4 Hz, 2 H), 3.93 (dddd, J = 5.4, 5.4, 5.4, 5.4 Hz, 1 H), 7.16-7.22 (m, 6 H), 7.27-7.31 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) & 12.7 (d), 18.2 (q), 29.8 (t), 29.9 (t), 31.5 (t), 38.1 (t), 38.5 (t), 44.4 (t), 70.9 (d), 125.8 (d), 126.1 (d), 128.3 (d), 128.4 (d), 128.5 (d), 141.1 (s), 142.3 (s), 210.0 (s) (two signals overlap in the aromatic region); exact mass m/z calcd for C₂₉H₄₄NaO₂Si (M + Na) 475.3003, found 475.3009.

Tetradecanedial (23). (a) Tetradecane-1,14-diol (23b). Pt–C (10% w/w, ca. 10 mg) was added to a solution of $23a^6$ (0.1535 g, 0.6904 mmol) in MeOH (10 mL), and the mixture was stirred under H₂ (doubled balloon) for 20 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (1.8×19 cm), using EtOAc–petroleum ether mixtures from 40% to 80% EtOAc, gave 23b (0.0959 g, 60%) as a solid: mp 83.5–89 °C. (b) Tetradecanedial (23)^{6a}. (COCl)₂ (0.36 mL, 4.1 mmol) was

added dropwise to a stirred and cooled (-78 °C) solution of DMSO (0.5800, 8.163 mmol) in CH₂Cl₂ (5 mL). After 15 min, a solution of 23b (0.122 mL, 0.529 mmol) in CH₂Cl₂ (3 mL) was added dropwise. After a further 45 min, Et₃N (1.474 mL, 10.57 mmol) was added dropwise, and stirring was continued for 30 min. The mixture was then stored at -20 °C (freezer) for 20 h, transferred to an ice bath, and stirred at 0 °C for 3 h. Water (6 mL) and CH_2Cl_2 (10 mL) were added, and the aqueous phase was extracted with CH₂Cl₂. The combined organic extracts were washed with saturated aqueous NaHCO₃, dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 16 \text{ cm})$, using EtOAc-petroleum ether mixtures from 5% to 15% EtOAc, gave 23 (0.0901 g, 83%) as an oil: FTIR (CH₂Cl₂, cast) 2915, 2850, 2749, 1788, 1705, 1674, 1471 cm⁻ ¹H NMR (CDCl₃, 500 MHz) δ 1.23–1.37 (m, 16 H), 1.63 (quintet, J = 7.2 Hz, 4 H), 2.42 (td, J = 7.4, 1.9 Hz, 4 H), 9.77 (t, J = 1.9 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 22.1 (t), 29.2 (t), 29.3 (t), 29.4 (t), 29.5 (t), 43.9 (t), 202.9 (d); exact mass m/zcalcd for $C_{14}H_{26}NaO_2$ (M + Na) 249.1825, found 249.1828.

Octadeca-1,17-diene-3,16-diol (24). MeLi (1.6 M in Et₂O, 0.61 mL, 0.98 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.045 mL, 0.246 mmol) in dry Et₂O (6 mL). After 1 h, the mixture was cooled to -78 °C, and a solution of 23 (0.0139 g, 0.0614 mmol) in Et₂O (2 mL plus 2 mL as a rinse) was added by cannula. The cold bath was left in place but not recharged, and stirring was continued for 22 h. The mixture was cooled to 0 °C and quenched with water (10 mL), and the aqueous phase was extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 15 \text{ cm})$, using EtOAc-petroleum mixtures from 10% to 20% EtOAc, gave 24 (0.0141 g, 81%) as a solid: mp 49-53 °C; FTIR (CH₂Cl₂, microscope) 3312, 3092, 3015, 2986, 2914, 2849, 1857, 1646, 1465 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.24-1.44 (m, 22 H), 1.48–1.58 (m, 4 H), 4.10 (apparent qt, J = 6.1, 1.2 Hz, 2 H), 5.11 (dt, J = 10.4, 1.5 Hz, 2 H), 5.22 (dt, J = 17.2, 1.5 Hz, 2 H), 5.87 (ddd, J = 17.2, 10.4, 6.2 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.3 (t), 29.5 (t), 29.55 (t), 29.59 (t), 37.1 (t), 73.3 (d), 114.5 (t), 141.3 (d); exact mass m/z calcd for C₁₈H₃₄-NaO₂ (M + Na) 305.2451, found 305.2450.

Cyclohexadec-2-ene-1,4-diol (25). A solution of 24 (0.0107 g, 0.0379 mmol) in dry CH₂Cl₂ (10 mL) was added dropwise over 20 h to a stirred solution of Grubbs II catalyst⁸ (0.0032 g, 0.0038 mmol) in CH₂Cl₂ (5 mL) (N₂ atmosphere). After 6 days, the mixture was evaporated and flash chromatography of the residue over silica gel $(0.7 \times 15 \text{ cm})$, using EtOAc-petroleum ether mixtures from 10% to 100% EtOAc, gave 25 (0.0069 g, 72%) as a semisolid that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast microscope) 3357, 2925, 2855, 2680, 1956, 1660, 1633, 1460 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.15–1.42 (m, 22 H), 1.50–1.60 (m, 2 H), 1.60–1.72 (m, 2 H), 4.10-4.15 (m, 1 H), 4.23-4.28 (m, 1 H), 5.58 (dd, J = 5.0, 2.5 Hz)1 H), 5.71 (dd, J = 3.0, 1.3 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz) δ 23.6 (t), 24.2 (t), 25.0 (t), 25.90 (t), 25.94 (t), 27.2 (t), 27.3 (t), 27.8 (t), 28.0 (t), 36.9 (t), 37.0 (t), 72.1 (d), 73.5 (d), 133.1 (d), 135.0 (d); exact mass m/z calcd for C₁₆H₃₀NaO₂ (M + Na) 277.2138, found 277.2139.

Cyclohexadecane-1,4-diol. Pd–C (5% w/w, ca. 4 mg) was added to a solution of **25** (0.0252 g, 0.0991 mmol) in MeOH (1 mL), and the mixture was stirred under H₂ (doubled balloon) for 8 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel (0.7×15 cm), using 2% MeOH–EtOAc, gave cyclohexadecane-1,4-diol (0.0179 g, 70%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast) 3392, 3313, 2921, 2850, 1644, 1469 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.18–1.43 (m, 26 H), 1.44–1.70 (m, 4 H), 3.72–3.82 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.1 (t), 23.6 (t), 26.47 (t), 26.51 (t), 26.56 (t), 26.64 (t), 26.7 (t), 26.8 (t), 26.9 (t), 27.0 (t), 29.7 (t), 30.9 (t), 31.3 (t), 31.4 (t), 35.18 (t), 35.24 (t), 70.2 (d), 71.0 (d); exact mass *m/z* calcd for C₁₆H₃₂NaO₂ (M + Na) 279.2295, found 279.2296.

Cyclohexadecane-1,4-dione (26)²³. Jones reagent²⁰ (7.0 M in acetone, 0.025 mL, 0.176 mmol) was added dropwise to a stirred and cooled (0 °C) solution of cyclohexadecane-1,4-diol (0.0150 g, 0.0585 mmol) in acetone (4 mL). After 1.5 h, the orange mixture was quenched with MeOH (3 mL), and stirring was continued for 30 min, by which time the mixture had become dark green. The mixture was diluted with EtOAc (15 mL), washed with water and brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel (0.4×6 cm), using 10% EtOAc-petroleum ether, gave **26** (0.0126 g, 86%) as an oil: FTIR (CH₂Cl₂, cast microscope) 2930, 2856, 1712, 1457, 1408 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.14–1.40 (m, 16 H), 1.58–1.66 (m, 4 H), 2.46–2.51 (m, 4 H), 2.69 (s, 4 H); ¹³C NMR

(CDCl₃, 100 MHz) δ 23.2 (t), 25.7 (t), 26.8 (t), 26.9 (t), 27.5 (t), 36.5 (t), 42.0 (t), 210.4 (s); exact mass *m*/*z* calcd for C₁₆H₂₈O₂ 252.2089, found 252.2091.

Methyl 7,8,10,11-Tetradeoxy-2,3,4-tris-O-methyl-11-phenylα-D-gluco-unedec-7-ynopyranoside (27). BuLi (2.5 M in hexanes, 1 mL, 2.5 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 1 (196.5 mg, 1.23 mmol) in THF (11 mL). After 1 h, a solution of freshly prepared crude methyl 2,3,4tri-O-methyl-α-D-gluco-hexodialdo-1,5-pyranoside²⁴ (161.2 mg, 0.69 mmol) in THF (2 mL) was added dropwise. The cooling bath was left in place but not recharged, and stirring was continued for 23 h. The mixture was quenched with saturated aqueous NH₄Cl (8 mL) and extracted with EtOAc. The combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel $(2.5 \times 15 \text{ cm})$, using 75% EtOAc-hexanes, gave 27 (181.2 mg, 67% or 85%, based on recovered starting material) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CHCl₃, microscope) 3423, 3085, 3062, 3026, 2934, 2836, 2248, 1604, 1496, 1454 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.94–2.12 (m, 2 H), 2.19-2.32 (m, 1 H), 2.73-2.83 (m, 3 H), 3.18-3.26 (m, 1 H), 3.31-3.73 (m, 15 H), 4.39-4.46 (m, 1 H), 4.62-4.73 (m, 1 H), 4.85 (d, J = 3.2 Hz, 1 H), 7.17–7.22 (m, 3 H), 7.26–7.31 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 31.58 (t), 31.66 (t), 31.69 (t), 39.3 (t), 39.4 (t), 55.4 (q), 55.5 (q), 59.3 (q), 60.9 (q), 61.1 (q), 61.2 (q), 61.5 (q), 61.6 (q), 61.8 (q), 61.9 (q), 62.8 (q), 72.21 (d), 72.26 (d), 72.30 (d), 79.5 (d), 81.3 (d), 81.4 (d), 81.99 (d), 82.04 (d), 82.5 (s), 82.6 (s), 83.6 (d), 83.8 (d), 84.3 (s), 86.2 (s), 88.0 (s), 97.7 (d), 97.9 (d), 126.30 (d), 126.31 (d), 128.71 (d), 128.72 (d), 141.34 (s), 141.36 (s); exact mass m/z calcd for C₂₁H₃₀NaO₇ (M + Na) 417.1884, found 417.1891.

Methyl 7,8,10,11-Tetradeoxy-2,3,4-tris-O-methyl-11-phenylα-D-gluco-unedecanopyranoside (28). Pt-C (5% w/w, 14 mg) was added to a solution of 27 (35.9 mg, 0.091 mmol) in MeOH (1.5 mL), and the mixture was stirred under H₂ (balloon) for 1 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(0.6 \times 8 \text{ cm})$, using EtOAc-hexanes from 50% EtOAc to 100% EtOAc, gave 28 (27.3 mg, 75%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CHCl₃, microscope) 3448, 3085, 3061, 3025, 2933, 2836, 1603, 1496, 1454 cm⁻¹; ^fH NMR (CDCl₃, 400 MHz) δ 1.52–1.90 (m, 6 H), 2.42 (s, 1 H), 2.64–2.85 (m, 2 H), 3.14–3.20 (m, 2 H), 3.26-3.31 (m, 1 H), 3.36-3.69 (m, 15 H), 3.79 (s, 1 H), 4.78 (dd, J = 3.4, 15.4 Hz, 1 H), 7.16–7.21 (m, 3 H), 7.26–7.30 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 28.1 (t), 28.9 (t), 30.3 (t), 31.3 (t), 32.09 (t), 32.13 (t), 32.15 (t), 32.19 (t), 33.8 (t), 34.1 (t), 34.4 (t), 34.7 (t), 39.1 (t), 39.4 (t), 55.17 (q), 55.24 (q), 55.29 (q), 55.31 (q), 58.9 (q), 59.0 (q), 60.2 (q), 60.6 (q), 60.7 (q), 60.8 (q), 69.3 (d), 69.4 (d), 70.9 (d), 71.0 (d), 71.1 (d), 71.3 (d), 71.4 (d), 72.1 (d), 72.4 (d), 73.2 (d), 73.3 (d), 79.5 (d), 81.7 (d), 82.0 (d), 82.26 (d), 82.33 (d), 83.6 (d), 83.7 (d), 97.2 (d), 97.6 (d), 125.7 (d), 125.8 (d), 128.34 (d), 128.38 (d), 128.39 (d), 128.41 (d), 142.0 (s), 142.27 (s), 142.29 (s); exact mass m/z calcd for C₂₁H₃₄NaO₇ (M + Na) 421.2197, found 421.2199.

6-Phenyl-1-[(2*S*,3*S*,4*S*,5*R*,6*S*)-tetrahyro-3,4,5,6-tetramethoxypyran-2-yl]hexane-1,4-dione (29). DMSO (0.09 mL, 1.27 mmol) in CH₂Cl₂ (1.5 mL) was added dropwise to a stirred and cooled (-78 °C) solution of (COCl)₂ (0.06 mL, 0.694 mmol) in CH₂Cl₂ (1 mL). After 15 min, a solution of **28** (101.6 mg, 0.255 mmol) in CH₂Cl₂ (1.5 mL) was added dropwise, and stirring at -78 °C was continued for 35 min. Then Et₃N (0.2 mL) was added dropwise, and stirring at -78 °C was continued for 5 min. The cooling bath was removed, and stirring was continued for 25 min. Water (2 mL) was added, and the organic phase was dried

⁽²³⁾ Corey, E. J.; Helquist, P. Tetrahedron Lett. 1975, 16, 4091-4094.

⁽²⁴⁾ Collins, D. J.; Hibberd, A. I.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1998, 51, 681–694.

(MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.5×13 cm), using 50% EtOAc-hexanes, gave **29** (83.9 mg, 83%) as an colorless oil: $[\alpha]^{20}_{D}$ 79.2 (*c* 1.35, CHCl₃); FTIR (CHCl₃, cast microscope) 3062, 3027, 2933, 2836, 1716, 1604, 1497, 1454 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.60–2.68 (m, 1 H), 2.72–2.85 (m, 4 H), 2.89–3.03 (m, 3 H), 3.20–3.31 (m, 2 H), 3.45–3.63 (m, 13 H), 4.06 (dd, *J* = 1.6, 10 Hz, 1 H), 4.87 (dd, *J* = 1.6, 3.2 Hz, 1 H), 7.17–7.21 (m, 3 H), 7.26–7.30 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 30.0 (t), 34.7 (t), 36.0 (t), 44.5 (t), 55.9 (q), 59.4 (q), 60.8 (q), 61.2 (q), 74.0 (d), 80.9 (d), 81.5 (d), 83.7 (d), 98.1 (d), 126.3 (d), 128.5 (d), 128.7 (d), 141.2 (s), 205.8 (s), 208.2 (s); exact mass *m*/*z* calcd for C₂₁H₃₀NaO₇ (M + Na) 417.1884, found 417.1879.

3,6-Bis(2-phenylethyl)octa-1,7-diene-3,6-diol (30). MeLi (1.6 M in Et₂O, 3.31 mL, 5.29 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.24 mL, 1.3 mmol) in dry $Et_2O(20 \text{ mL})$. After 35 min, the mixture was cooled to $-78 \degree C$, and a solution of 4 (0.1146 g, 0.3893 mmol) in Et₂O (3.5 mL plus 3.5 mL as a rinse) was added by cannula. The cold bath was left in place but not recharged, and stirring was continued for 12 h. The mixture was quenched with a mixture of water (50 mL) and saturated aqueous NH₄Cl (25 mL). The aqueous phase was extracted with Et₂O, and the combined organic extracts were washed with brine, dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.8×19 cm), using EtOAc-hexane mixtures from 15% to 30% EtOAc, gave 30 (0.1070 g, 78%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast microscope) 3416, 3085, 3062, 3026, 2946, 2863, 1945, 1867, $1744, 1642, 1603, 1497 \text{ cm}^{-1}; {}^{1}\text{H NMR} (\text{CDCl}_{3}, 500 \text{ MHz}) \delta 1.55 -$ 1.70 (m, 3 H), 1.70–1.85 (m, 4 H), 1.85–1.97 (m, 3 H), 2.58–2.71 (m, 4 H), 5.18-5.24 (m, 2 H), 5.25-5.32 (m, 2 H), 5.79-5.89 (m, 2 H), 7.15-7.20 (m, 6 H), 7.25-7.30 (m, 4 H); 13 C NMR (CDCl₃, 125 MHz) δ 30.0 (t), 34.3 (t), 34.4 (t), 42.7 (t), 43.3 (t), 75.2 (s), 75.3 (s), 113.3 (t), 113.5 (t), 125.78 (d), 125.79 (d), 128.36 (d), 128.41 (d), 142.36 (s), 142.38 (s), 143.2 (d), 143.5 (d); exact mass m/z calcd for C₂₄H₃₀O₂ 373.2138, found 373.2139.

1,4-Bis(2-phenylethyl)cyclohex-2-ene-1,4-diol (31). Grubbs I catalyst (0.0192 g, 0.0233 mmol) was added to a stirred solution of 30 (0.1152 g, 0.3287 mmol) in dry CH₂Cl₂ (20 mL) (N₂ atmosphere). After 24 h, the mixture was evaporated and flash chromatography of the residue over silica gel $(1.3 \times 11 \text{ cm})$, using EtOAc-petroleum ether mixtures from 10% to 100% EtOAc, gave **31** [0.0376 g, 35% less polar diastereoisomer; 0.0666 g, 62% more polar diastereoisomer (98% overall)] as semisolids: The more polar diastereoisomer: FTIR (CH2Cl2, cast microscope) 3377, 3061, 3025, 2933, 2858, 1945, 1870, 1663, 1496 cm⁻ ¹H NMR (CDCl₃, 400 MHz) δ 1.56–1.65 (br s, 2 H), 1.77–1.92 (m, 8 H), 2.71 (t, J = 8.7 Hz, 4 H), 5.77 (s, 2 H), 7.17-7.23 (m, 6 H), 7.26-7.30 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 29.9 (t), 32.9 (t), 42.8 (t), 70.3 (s), 125.9 (d), 128.3 (d), 128.5 (d), 134.4 (d), 142.2 (s); exact mass m/z calcd for C₂₂H₂₆NaO₂ (M + Na) 345.1825, found 345.1824.

The less polar diastereoisomer: FTIR (CH₂Cl₂, cast microscope) 3377, 3062, 3025, 2931, 2859, 1946, 1603, 1496 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.55–1.65 (br s, 2 H), 1.77–1.94 (m, 8 H), 2.74 (t, *J* = 8.6 Hz, 4 H), 5.76 (s, 2 H), 7.16–7.23 (m, 6 H), 7.26–7.32 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 29.9 (t), 31.8 (t), 44.0 (t), 69.5 (s), 125.9 (d), 128.3 (d), 128.4 (d), 134.2 (d), 142.1 (s); exact mass *m*/*z* calcd for C₂₂H₂₆NaO₂ (M + Na) 345.1825, found 345.1823.

1,4-Bis(2-phenylethyl)benzene $(32)^{25}$. Use of More Polar Isomer of 31. TsOH \cdot H₂O (0.0112 g, 0.0589 mmol) was added to a solution of the more polar diastereoisomer of 31 (0.0185 g, 0.0574 mmol) in dry PhH (2 mL), and the mixture was refluxed for 7 h, cooled to room temperature, and partitioned between

water and CH₂Cl₂. The aqueous phase was extracted with hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (0.7 × 18 cm), using EtOAc–petroleum ether mixtures from 0% to 2% EtOAc, gave **32** (0.0161 g, 98%) as a solid: mp 85–90 °C; FTIR (CH₂Cl₂, cast microscope) 3084, 3062, 3023, 2933, 2916, 2852, 1902, 1698, 1602, 1512, 1496, 1452 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.90 (s, 8 H), 7.11 (s, 4 H), 7.17–7.23 (m, 6 H), 7.26–7.31 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 37.5 (t), 38.0 (t), 125.9 (d), 128.3 (d), 128.38 (d), 128.44 (d), 139.3 (s), 141.9 (s); exact mass *m*/*z* calcd for C₂₂H₂₂ 286.1722, found 286.1723.

Use of Less Polar Isomer of 31. TsOH·H₂O (0.0074 g, 0.039 mmol) was added to a solution of the less polar diastereoisomer of 31 (0.0126 g, 0.0391 mmol) in dry PhH (1.5 mL), and the mixture was refluxed for 5 h, cooled to room temperature, and partitioned between water and CH₂Cl₂. The aqueous phase was extracted with hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (0.7 × 15 cm), using EtOAc−petroleum ether mixtures from 0% to 2% EtOAc, gave 32 (0.011 g, 100%).

3-Pentyl-6-(2-phenylethyl)octa-1,7-diene-3,6-diol (33). MeLi (1.6 M in Et₂O, 1.81 mL, 2.89 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.13 mL, 0.72 mmol) in dry Et₂O (10 mL). After 45 min, the mixture was cooled to -78 °C and a solution of 7 (0.0471 g, 0.181 mmol) in Et₂O (2 mL plus 2 mL as a rinse) was added by cannula. The cooling bath was left in place but not recharged, and stirring was continued for 12 h. The mixture was quenched with a mixture of water (25 mL) and saturated aqueous NH_4Cl (25 mL). The aqueous phase was extracted with Et₂O, and the combined organic extracts were washed with brine, dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 16 \text{ cm})$, using EtOAc-hexane mixtures from 15% to 30% EtOAc, gave 33 (0.0533 g, 93%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast microscope) 3419, 3086, 3063, 3026, 3006, 2953, 2933, 2861, 1942, 1844, 1734, 1642, 1604, 1497, 1455 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.88 (t, J = 6.7 Hz, 3 H), 1.20 - 1.38 (m, 6 H), 1.44 - 1.72 (m, 6 H), 1.72-1.98 (m, 4 H), 2.56-2.73 (m, 2 H), 5.09-5.33 (m, 4 H), 5.72–5.90 (m, 2 H), 7.15–7.20 (m, 3 H), 7.24–7.30 (2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.0 (q), 22.6 (t), 23.1 (t), 30.0 (t), 32.2 (t), 34.0 (t), 34.4 (t), 34.5 (t), 41.0 (t), 41.6 (t), 42.7 (t), 43.3 (t), 75.1 (s), 75.2 (s), 112.6 (t), 112.9 (t), 113.1 (t), 113.4 (t), 125.70 (d), 125.73 (d), 128.35 (d), 128.37 (d), 142.5 (s), 143.4 (d), 143.5 (d), 143.6 (d), 143.9 (d); exact mass m/z calcd for C₂₁H₃₂NaO₂ (M + Na) 339.2295, found 339.2288.

1-Pentyl-4-(2-phenylethyl)cyclohex-2-ene-1,4-diol (34). Grubbs I catalyst (0.0027 g, 0.0033 mmol) was added to a stirred solution of 33 (0.0523 g, 0.165 mmol) in dry CH₂Cl₂ (7 mL) (N₂ atmosphere). After 12 h, the mixture was evaporated and flash chromatography of the residue over silica gel $(1.4 \times 14 \text{ cm})$, using EtOAc-petroleum ether mixtures from 10% to 40% EtOAc, gave 34 [0.0306 g, 64% less polar diastereoisomer; 0.0171 g, 35% more polar diastereoisomer (99% overall)] as oils. The more polar diastereoisomer: FTIR (CH₂Cl₂, neat film microscope) 3309, 3061, 3026, 2954, 2929, 2861, 1940, 1864, 1740, 1603 cm⁻¹; ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 0.90 (t, J = 6.8 \text{ Hz}, 3 \text{ H}), 1.20 - 1.46 (m, 6 \text{ H}),$ 1.47-1.65 (m, 4 H), 1.63-1.85 (m, 2 H), 1.81-2.17 (m, 4 H), 2.67-2.81 (m, 2 H), 5.70-5.74 (m, 2 H), 7.16-7.23 (m, 3 H), 7.28-7.32 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (q), 22.6 (t), 23.2 (t), 29.9 (t), 32.3 (t), 32.7 (t), 32.9 (t), 41.1 (t), 42.8 (t), 70.3 (s), 70.4 (s), 125.8 (d), 128.3 (d), 128.4 (d), 134.0 (d), 134.7 (d), 142.3 (s); exact mass m/z calcd for C₁₉H₂₈NaO₂ (M + Na) 311.1982, found 311.1982.

The less polar diastereoisomer: FTIR (CH₂Cl₂, neat film microscope) 3538, 3389, 3063, 3027, 2930, 2860, 1946, 1870, 1741, 1603, 1497, 1454 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.91

⁽²⁵⁾ Agranat, I.; Avnir, D. J. Chem. Soc., Perkin Trans. 1 1974, 1155–1161.

(t, J = 6.9 Hz, 3 H), 1.25–1.46 (m, 6 H), 1.46–1.64 (m, 4 H), 1.66–1.81 (m, 2 H), 1.83–2.20 (m, 4 H), 2.67–2.81 (m, 2 H), 5.69–5.76 (m, 2 H), 7.17–7.23 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (q), 22.6 (t), 23.2 (t), 30.0 (t), 31.7 (t), 31.9 (t), 32.3 (t), 42.2 (t), 44.0 (t), 69.5 (s), 69.6 (s), 125.8 (d), 128.3 (d), 128.4 (d), 133.8 (d), 134.7 (d), 142.2 (s); exact mass m/z calcd for C₁₉H₂₈NaO₂ (M + Na) 311.1982, found 311.1977.

1-Pentyl-4-(2-phenylethyl)benzene (35)²⁶. Use of More Polar Isomer of 34. TsOH \cdot H₂O (0.0113 g, 0.0593 mmol) was added to a solution of the more polar diastereoisomer of 34 (0.0171 g, 0.0593 mmol) in dry PhH (4 mL), and the mixture was refluxed for 1 h, cooled to room temperature, and partitioned between water and CH₂Cl₂. The aqueous phase was then extracted with hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 15 \text{ cm})$, using EtOAc-petroleum ether mixtures from 0% to 2% EtOAc, gave 35 (0.0150 g, 100%) as an oil: FTIR (CH₂Cl₂, neat film microscope) 3026, 2955, 2928, 2857, 1604, 1514, 1496 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.91 (t, J = 7.0 Hz, 3 H), 1.27-1.42 (m, 4 H), 1.63 (apparent quintet, J =7.6 Hz, 2 H), 2.58 (dd, J = 7.7, 7.7 Hz, 2 H), 2.87–2.96 (m, 4 H), 7.14 (s, 4 H), 7.18–7.24 (m, 3 H), 7.27–7.33 (2 H); ¹³C NMR (CDCl₃, 100 MHz) & 14.0 (q), 22.6 (t), 31.2 (t), 31.5 (t), 35.5 (t), 37.5 (t), 38.0 (t), 125.8 (d), 128.2 (d), 128.30 (d), 128.34 (d), 128.4 (d), 138.9 (s), 140.5 (s), 142.0 (s); exact mass m/z calcd for C₁₉H₂₄ 252.1878, found 252.1877.

Use of Less Polar Isomer of 34. TsOH·H₂O (0.0202 g, 0.106 mmol) was added to a solution of the less polar diastereoisomer of 34 (0.0306 g, 0.106 mmol) in dry PhH (4 mL), and the mixture was refluxed for 1 h, cooled to room temperature, and partitioned between water and CH₂Cl₂. The aqueous phase was then extracted with hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (0.7 × 16 cm), using EtOAc-petroleum ether mixtures from 0% to 2% EtOAc, gave 35 (0.027 g, 100%) as an oil.

3-(1-Adamantyl)-6-(2-phenylethyl)octa-1,7-diene-3,6-diol (36). MeLi (1.6 M in Et₂O, 0.41 mL, 0.66 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.030 mL, 0.165 mmol) in dry Et₂O (3 mL). After 45 min, the mixture was cooled to -78 °C, and a solution of 10 (0.0134 g, 0.0413 mmol) in Et₂O (1 mL plus 1 mL as a rinse) was added by cannula. The cold bath was left in place but not recharged, and stirring was continued for 5 h. The mixture was cooled to 0 °C and quenched with a mixture of water (50 mL) and saturated aqueous NH₄Cl (25 mL). The aqueous phase was extracted with Et₂O, and the combined organic extracts were washed with brine, dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (0.7×15 cm), using 15% EtOAc-hexane, gave 36 (0.0146 g, 93%) as a semisolid mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast) 3433, 3085, 3025, 2905, 2849, 2679, 1742, 1667, 1497 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.44– 1.53 (m, 3 H), 1.57-1.72 (m, 13 H), 1.72-1.90 (m, 3 H), 1.99 (br s, 3 H), 1.99–2.56 (br s, 1 H), 2.56–2.72 (m, 2 H), 5.12–5.32 (m, 4 H), 5.75-5.92 (m, 2 H), 7.14-7.20 (m, 3 H), 7.24-7.30 (m, 2 H); 13 C NMR (CDCl₃, 100 MHz) δ 25.69 (t), 25.76 (t), 28.6 (d), 30.0 (t), 34.2 (t), 34.5 (t), 36.4 (t), 37.1 (t), 39.3 (t), 42.6 (t), 43.7 (t), 75.3 (s), 75.4 (s), 79.1 (s), 79.2 (s), 112.9 (t), 113.3 (t), 113.8 (t), 114.0 (t), 125.65 (d), 125.72 (d), 128.34 (d), 128.35 (d), 128.37 (d), 140.5 (d), 140.6 (d), 142.5 (s), 142.6 (s), 143.7 (d), 143.8 (d); exact mass m/z calcd for C₂₆H₃₆NaO₂ (M + Na) 403.2608, found 403.2608.

1-(Adamantyl)-4-(2-phenylethyl)cyclohex-2-ene-1,4-diol (37). Grubbs I catalyst (0.0020 g, 0.0024 mmol) was added to a stirred solution of 36 (0.0146 g, 0.0384 mmol) in dry CH₂Cl₂ (2.5 mL) (N₂ atmosphere). After 3 h, the mixture was evaporated, and

flash chromatography of the residue over silica gel (0.7×16 cm), using EtOAc–petroleum ether mixtures from 10% to 100% EtOAc, gave **37** [0.0091 g, 67% less polar diastereoisomer; 0.0046 g, 33% more polar diastereoisomer (100% overall)] as semisolids. The less polar diastereoisomer: FTIR (CH₂Cl₂, cast) 3352, 3085, 3025, 2984, 2928, 2901, 2847, 2675, 1742, 1603, 1451 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.20–1.45 (br m, 2 H), 1.54–1.82 (m, 15 H), 1.82–2.00 (m, 3 H), 2.04 (apparent s, 3 H), 2.68–2.82 (m, 2 H), 5.83 (dd, *J* = 10.1, 1.7 Hz, 1 H), 5.95 (dd, *J* = 10.3, 1.8 Hz, 1 H), 7.16–7.23 (m, 3 H), 7.26–7.31 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.3 (t), 28.5 (d), 29.9 (t), 31.1 (t), 35.8 (t), 36.4 (s), 37.1 (t), 38.4 (t), 44.3 (t), 72.7 (s), 125.8 (d), 128.32 (d), 128.37 (d), 128.39 (d), 131.3 (d), 134.9 (d), 142.3 (s); exact mass *m*/*z* calcd for C₂₄H₃₂NaO₂ (M + Na) 375.2295. The molecular ion could not be detected as the compound readily aromatized under all conditions tried.

The more polar diastereoisomer: FTIR (CH₂Cl₂, cast) 3397, 3085, 3062, 3026, 2904, 2849, 2677, 1742, 1603, 1452 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.42–1.60 (br m, 2 H), 1.60–1.80 (m, 15 H), 1.80–1.98 (m, 3 H), 2.02 (apparent s, 3 H), 2.68–2.84 (m, 2 H), 5.81 (dd, *J* = 10.4, 1.5 Hz, 1 H), 5.85 (dd, *J* = 10.3, 1.8 Hz, 1 H), 7.16–7.23 (m, 3 H), 7.26–7.32 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 27.7 (t), 28.4 (d), 29.9 (t), 33.1 (t), 35.7 (s), 35.8 (t), 37.1 (t), 41.1 (t), 71.2 (s), 72.9 (s), 125.8 (d), 128.3 (d), 128.4 (d), 128.9 (d), 137.4 (d), 142.5 (s); exact mass *m*/*z* calcd for C₂₄H₃₂NaO₂ (M + Na) 375.2295, found 375.2295.

1-[4-(2-Phenylethyl)phenyl]adamantane (38). Use of less polar isomer of 37. TsOH·H₂O (0.0012 g, 0.0064 mmol) was added to a solution of the less polar diastereoisomer of 37 (0.0075 g, 0.021 mmol) in dry PhH (4 mL), and the mixture was refluxed for 2 h, cooled to room temperature, and partitioned between water and CH₂Cl₂. The aqueous phase was extracted with hexane, and the combined organic extracts were dried (Na_2SO_4) and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 15 \text{ cm})$, using EtOAc-petroleum ether mixtures from 0% to 2% EtOAc, gave 38 (0.0064 g, 95%) as a solid: mp 96-99 °C; FTIR (CH₂Cl₂, cast) 3060, 3025, 2903, 2848, 2657, 1603, 1515, 1496, 1452 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.75-1.83 (m, 6 H), 1.93 (d, J = 2.7 Hz, 6 H), 2.10 (apparent s, 3 H), 2.87-2.96 (m, 4 H), 7.18 (apparent d, J = 8.4 Hz, 2 H), 7.20-7.24 (m, 3 H), 7.28-7.32 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 29.0 (d), 35.9 (s), 36.8 (t), 37.5 (t), 37.9 (t), 43.3 (t), 124.8 (d), 125.9 (d), 128.1 (d), 128.3 (d), 128.4 (d), 138.9 (s), 142.1 (s), 149.0 (s); exact mass m/z calcd for C₂₄H₂₈ 316.2191, found 316.2192.

Use of more polar isomer of 37. TsOH \cdot H₂O (0.0007 g, 0.004 mmol) was added to a solution of the more polar diastereoisomer of 37 (0.0043 g, 0.012 mmol) in dry PhH (3 mL), and the mixture was refluxed for 2 h, cooled to room temperature, and partitioned between water and CH₂Cl₂. The aqueous phase was extracted with hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (0.7 × 15 cm), using EtOAc-petroleum ether mixtures from 0% to 2% EtOAc, gave 38 (0.0035 g, 91%) as a solid: mp 96–99 °C.

Use of a mixture of isomers of 37. Grubbs I catalyst (0.0041 g, 0.0049 mmol) was added to a stirred solution of 36 (a mixture of isomers, 0.0188 g, 0.0494 mmol) in dry CH₂Cl₂ (5 mL) (N₂ atmosphere). After 3 h, the mixture was evaporated, and the residue was stored for a few minutes under oil pump vacuum and then dissolved in PhH (5 mL). TsOH \cdot H₂O (0.0028 g, 0.0148 mmol) was added to the solution of crude 37, and the mixture was refluxed for 30 min, cooled to room temperature, and stirred for an additional 36 h. The mixture was then partitioned between water and CH₂Cl₂, and the aqueous phase was extracted with hexane. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (0.7 × 15 cm), using EtOAc-petroleum ether mixtures from

⁽²⁶⁾ Sundaresan, A. K.; Ramamurthy, V. Org. Lett. 2007, 9, 3575–3578.

0% to 2% EtOAc, gave **38** (0.0149 g, 95%) as a solid, identical to material obtained from the less polar isomer of **37**.

3,6-Bis(1-adamantyl)octa-1,7-diene-3,6-diol (39). MeLi (1.6 M in Et₂O, 0.50 mL, 0.80 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.037 mL, 0.201 mmol) in dry $Et_2O(5 \text{ mL})$. After 1 h, the mixture was cooled to $-78 \text{ }^{\circ}C$, and a solution of 14 (0.0089 g, 0.025 mmol) in $Et_2O(1 \text{ mL plus } 1 \text{ mL as})$ a rinse) was added by cannula. After 1.75 h the cold mixture was quenched with saturated aqueous NH₄Cl (6 mL), and the aqueous phase was extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 12 \text{ cm})$, using EtOAc-hexane mixtures from 2% to 10% EtOAc, gave 39 as a mixture of diastereoisomers [6.6 mg, 64% less polar diastereoisomer; 2.3 mg, 22% more polar diastereoisomer (86% overall)]. The less polar diastereoisomer: FTIR (CH₂Cl₂, microscope) 3614, 3085, 2932, 2904, 2871, 2851, 2680, 2658, 2639, 1838, 1730, 1640, 1450, 1408 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.20–1.36 (m, 4 H), 1.36–1.50 (m, 4 H), 1.51–1.72 (m, 22 H), 1.97 (s, 6 H), 5.14 (dd, J = 17.4, 1.7 Hz, 2 H), 5.21 (dd, J = 11.0, 1.7 Hz, 2 H), 5.83 (dd, J = 17.3, 11.0 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.9 (t), 28.6 (d), 36.4 (t), 37.1 (t), 39.4 (s), 79.4 (s), 113.5 (t), 141.0 (d); exact mass m/z calcd for C₂₈H₄₂NaO₂ (M + Na) 433.3077, found 433.3076.

The more polar diastereoisomer: FTIR (CH₂Cl₂, cast microscope) 3476, 2905, 2849, 1718, 1451 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.18–1.36 (m, 8 H), 1.54–1.74 (m, 22 H), 1.97 (apparent s, 6 H), 5.18 (dd, J = 17.2, 1.8 Hz, 2 H), 5.21 (dd, J = 11.0, 1.8 Hz, 2 H), 5.78 (dd, J = 17.2, 11.0 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.2 (t), 28.7 (d), 36.4 (t), 37.2 (t), 39.4 (s), 79.2 (s), 113.8 (t), 141.1 (d); exact mass m/z calcd for C₂₈H₄₂-NaO₂ (M + Na) 433.3077, found 433.3079.

1,4-Bis(1-adamantyl)cyclohex-2-ene-1,4-diol (40). Grubbs I catalyst (0.0033 g, 0.0039 mmol) was added to a stirred solution of **39** (mixture of isomers, 0.008 g, 0.019 mmol) in dry CH₂Cl₂ (1 mL) (N₂ atmosphere). After 24 h, the reaction mixture was evaporated, and flash chromatography of the residue over silica gel (0.7 × 18 cm), using EtOAc-petroleum ether mixtures from 2% to 10% EtOAc, gave **40** as a mixture of two impure diastereoisomers (¹³C NMR) (ca. 5.6 mg). We were unable to obtain satisfactory NMR data: exact mass m/z calcd for C₂₆H₃₈NaO₂ (M + Na) 405.2764, found 405.2768.

1-[4-(1-Adamantyl)phenyl]adamantane (41)²⁷. TsOH·H₂O (0.0025 g, 0.013 mmol) was added to a solution of the above sample of 40 (0.0050 g, 0.013 mmol) in dry PhH (2 mL), and the mixture was refluxed for 4.5 h, cooled to room temperature, and partitioned between water and CH₂Cl₂. The aqueous phase was extracted with hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel [0.5 × 6 cm (Pasteur pipet)], using EtOAc-petroleum ether mixtures from 0% to 2% EtOAc, gave 41 (0.0043 g, 95%) as a solid: sublimes at 215–227 °C; FTIR (CH₂Cl₂, microscope) 3085, 3047, 3027, 2907, 2849, 2657, 1507 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.72–1.82 (m, 12 H), 1.93 (d, *J* = 2.3 Hz, 12 H), 2.09 (apparent s, 6 H), 7.31 (s, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 29.0 (d), 35.8 (s), 36.9 (t), 43.2 (t), 124.5 (d), 148.4 (s); exact mass *m*/*z* calcd for C₂₆H₃₄ 346.2661, found 346.2665.

3-Cycloheptyl-6-cyclohexylocta-1,7-diene-3,6-diol (42). MeLi (1.6 M in Et₂O, 1.16 mL, 1.86 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.09 mL, 0.47 mmol) in dry Et₂O (8 mL). After 45 min, the mixture was cooled to -78 °C, and a solution of **18** (0.0150 g, 0.0567 mmol) in Et₂O (2 mL plus 2 mL as a rinse) was added by cannula. The cold bath was left in place but not recharged, and stirring was continued for 11.5 h. The mixture was quenched with saturated aqueous

NH₄Cl (12 mL), and the aqueous phase was extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 17 \text{ cm})$, using EtOAc-hexane mixtures from 5% to 10% EtOAc, gave 42 (0.0148 g, 81%) as a semisolid that was a mixture of diastereoisomers (¹³C NMR): FTIR (CHCl₃, cast microscope) 3450, 3010, 2926, 2853, 1841, 1640, 1451 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.84–1.10 (m, 2 H), 1.10-1.32 (m, 6 H), 1.32-1.62 (m, 10 H), 1.62-1.87 (m, 10 H), 1.87–2.12 (br s, 2 H), 5.10–5.24 (m, 4 H), 5.70–5.87 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.50 (t), 26.53 (t), 26.6 (t), 26.7 (t), 27.56 (t), 27.62 (t), 27.64 (t), 27.7 (t), 27.8 (t), 27.9 (t), 28.0 (t), 28.1 (t), 28.17 (t), 28.24 (t), 28.3 (t), 29.00 (t), 29.02 (t), 30.9 (t), 31.1 (t), 31.3 (t), 31.4 (t), 46.9 (d), 47.3 (d), 48.1 (d), 48.6 (d), 77.2 (s), 77.3 (s), 78.1 (s), 78.2 (s), 112.9 (t), 113.06 (t), 113.11 (t), 113.3 (t), 142.57 (d), 142.62 (d), 142.7 (d); exact mass m/zcalcd for $C_{21}H_{36}NaO_2$ (M + Na) 343.2608, found 343.2609.

4-Cycloheptyl-1-cyclohexylbenzene (44). Grubbs I catalyst (0.0035 g, 0.0043 mmol) was added to a stirred solution of 42 (0.0138 g, 0.0431 mmol) in dry CH₂Cl₂ (5 mL) (N₂ atmosphere). After 18 h, the mixture was evaporated to afford a mixture of diol 43 and aromatized product 44. The crude material was dissolved in PhH (4 mL) and TsOH · H₂O (0.0112 g, 0.0589 mmol) was added. The solution was refluxed for 1 h, cooled to room temperature, and partitioned between water and CH₂Cl₂. The aqueous phase was extracted with hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 16 \text{ cm})$, using EtOAc-petroleum ether mixtures from 0% to 2% EtOAc, gave 44 (0.0105 g, 95%) as a solid: mp 75-80 °C; FTIR (CH₂Cl₂, microscope) 3050, 3010, 2923, 2850, 2668, 1899, 1785, 1647, 1515, 1447 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.20–1.34 (m, 1 H), 1.34–1.50 (m, 4 H), 1.50–1.75 (m, 8 H), 1.75–1.97 (m, 9 H), 2.44-2.51 (m, 1 H), 2.61-2.68 (m, 1 H), 7.12 (apparent s, 4 H); ¹³C NMR (CDCl₃, 100 MHz) δ 26.2 (t), 27.0 (t), 27.2 (t), 28.0 (t), 34.5 (t), 36.8 (t), 44.1 (d), 46.6 (d), 126.5 (d), 126.6 (d), 145.1 (s), 147.3 (s); exact mass m/z calcd for C₁₉H₂₈ 256.2191, found 256.2184.

2-Methyl-3,6-bis(2-phenylethyl)octa-1,7-diene-3,6-diol(45). (a) 2-Methyl-6-[[tris(1-methylethyl)silyl]oxy]-8-phenyl-3-(2-phenylethyl)oct-1-en-3-ol (45a). t-BuLi (1.7 M in pentane, 0.46 mL, 0.78 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 2-bromopropene (0.035 mL, 0.390 mmol) in dry Et₂O (6 mL). After 45 min, a solution of 22 (0.0222 g, 0.0490 mmol) in Et₂O (2 mL plus 1 mL as a rinse) was added by cannula. After 15 min, the dry ice bath was replaced by an ice bath, and the mixture was quenched with saturated aqueous NH₄Cl (5 mL). The aqueous phase was extracted with CH₂Cl₂, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 18 \text{ cm})$, using EtOAc-hexane mixtures from 2% to 10% EtOAc, gave 45a (0.0243 g, 100%) as a semisolid that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast film microscope) 3576, 3476, 3086, 3063, 3027, 2944, 2891, 2866, 1940, 1866, 1802, 1642, 1604, 1496, 1454 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.08 (apparent s, 21 H), 1.45-1.75 (m, 5 H), 1.77 (dd, J = 3.0, 0.7 Hz, 3 H), 1.80–1.97 (m, 4 H), 2.44–2.57 (m, 1 H), 2.58-2.76 (m, 3 H), 3.91 (dddd, J = 5.2, 5.2, 5.2, 5.2 Hz, 1 H), 5.01 (apparent q, J = 1.5, 1 H), 5.09 (apparent dq, J = 5.7, 0.7 Hz, 1 H), 7.16–7.22 (m, 6 H), 7.27–7.32 (m, 4 H); ¹³C NMR (CDCl₃, 100 MHz) δ 12.7 (d), 18.2 (q), 19.8 (q), 29.6 (t), 29.9 (t), 31.3 (t), 31.4 (t), 34.5 (t), 34.6 (t), 38.3 (t), 38.4 (t), 41.6 (t), 41.8 (t), 71.97 (d), 72.01 (d), 111.4 (t), 111.7 (t), 125.7 (d), 128.3 (d), 128.35 (d), 128.36 (d), 128.38 (d), 142.5 (s), 142.7 (t), 147.8 (s), 147.9 (s); exact mass m/zcalcd for $C_{32}H_{51}O_2Si$ 495.3653, found 495.3651; exact mass m/zcalcd for $C_{32}H_{50}NaO_2Si (M + Na) 517.3472$, found 517.3471.

(b) 2-Methyl-8-phenyl-3-(2-phenylethyl)oct-1-ene-3,6-diol (45b). Bu₄NF (1.0 M in THF, 0.163 mL, 0.163 mmol) was added dropwise to a stirred and cooled (0 °C) solution of 45a (0.0230 g,

⁽²⁷⁾ Bräse, S.; Waegell, B.; de Meijere, A. Synthesis 1998, 2, 148–152.

0.0465 mmol) in dry THF (6 mL). The cooling bath was left in place but not recharged, and stirring was continued for 19 h. The mixture was then quenched with water (5 mL) and extracted with EtOAc. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 15 \text{ cm})$, using EtOAc-petroleum ether mixtures from 20% to 100%, gave **45b** (0.0154 g, 98%) as an oil that was a mixture of diastereoisomers (13 C NMR): FTIR (CH₂Cl₂, microscope) 3381, 3085, 3062, 3026, 3001, 2943, 2861, 1946, 1870, 1805, 1707, 1643, 1604, 1584, 1496, 1454 cm⁻¹; ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 1.35 - 1.74 \text{ (m, 2 H)}, 1.74 \text{ (dd, } J = 1.5,$ 0.7 Hz, 1.8 H), 1.76 (dd, J = 1.5, 0.7 Hz, 1.2 H), 1.77-1.95 (m, 6 H), 2.15-2.40 (br s, 2 H), 2.46-2.56 (m, 1 H), 2.61-2.73 (m, 2 H), 2.74–2.84 (m, 1 H), 3.57–3.65 (m, 0.6 H), 3.65–3.72 (m, 0.4 H), 4.99-5.02 (m, 0.4 H), 5.02-5.04 (m, 0.6 H), 5.07-5.08 (m, 0.4 H), 5.10-5.12 (m, 0.6 H), 7.16-7.23 (m, 6 H), 7.25-7.32 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.80 (q), 19.82 (q), 29.8 (t), 29.9 (t), 31.1 (t), 31.3 (t), 32.1 (t), 32.2 (t), 35.0 (t), 36.4 (t), 38.9 (t), 39.5 (t), 41.7 (t), 41.9 (t), 71.07 (d), 72.14 (d), 77.7 (s), 77.8 (s), 111.7 (t), 112.1 (t), 125.76 (d), 125.78 (d), 125.8 (d), 125.9 (d), 128.3 (d), 128.37 (d), 128.41 (d), 141.97 (s), 142.02 (s), 142.4 (s), 142.5 (s), 147.7 (s), 147.8 (s); exact mass m/z calcd for C₂₃H₃₀NaO₂ (M + Na) 361.2138, found 361.2136.

(c) 6-Hydroxy-7-methyl-1-phenyl-6-(2-phenylethyl)oct-7-en-3-one (45c). (COCl)₂ (0.025 mL, 0.28 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of DMSO (0.0399, 0.562 mmol) in CH₂Cl₂ (3 mL). After 10 min, a solution of 45a (0.0123 g, 0.0363 mmol) in CH₂Cl₂ (1 mL) was added dropwise. After a further 40 min, Et₃N (0.10 mL, 0.73 mmol) was added dropwise, and stirring was continued for 10 min. The mixture was then stored at -20 °C (freezer) for 12 h and then warmed to 0 °C. Water (10 mL) was added, and the aqueous phase was extracted with CH₂Cl₂. The combined organic extracts were washed with saturated aqueous NaHCO3, dried (Na2SO4), and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times$ 16 cm), using EtOAc-petroleum ether mixtures from 2% to 10% EtOAc, gave **45c** (0.0105 g, ca. 86%) as an impure oil that was used in the next step: FTIR (CH2Cl2, microscope) 3464, 3085, 3062, 3026, 2949, 2867, 1944, 1871, 1804, 1709, 1644, 1604, 1496, 1454 cm⁻¹; exact mass m/z calcd for C₂₃H₂₈NaO₂ (M + Na) 359.1982, found 359.1976.

(d) 2-Methyl-3,6-bis(2-phenylethyl)octa-1,7-diene-3,6-diol (45). MeLi (1.6 M in Et₂O, 0.24 mL, 0.39 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.018 mL, 0.096 mmol) in dry Et₂O (4 mL). After 30 min, the mixture was cooled to -78 °C, and a solution of 45c (0.0081 g, 0.024 mmol) in Et₂O (1 mL plus 0.5 mL as a rinse) was added by cannula. The cold bath was left in place but not recharged, and stirring was continued for 12 h. The mixture was cooled to 0 °C and quenched with saturated aqueous NH₄Cl (5 mL), and the aqueous phase was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 18 \text{ cm})$, using EtOAchexane mixtures from 2% to 20% EtOAc, gave 45 (0.0066 g, 75%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, cast microscope) 3427, 3085, 3062, 3026, 3003, 2949, 2863, 1945, 1869, 1805, 1709, 1643, 1604, 1496, 1454 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.48–1.72 (m, 4 H), 1.73 (dd, J= 1.5, 0.7 Hz, 1.1 H), 1.75 (dd, J = 1.6, 0.6 Hz, 1.9 H), 1.76-1.94 (m, 6 H), 2.45-2.53 (m, 1 H), 2.57-2.71 (m, 3 H), 4.98-5.10 (m, 2 H), 5.18–5.32 (m, 2 H), 5.78–5.90 (m, 1 H), 7.15–7.20 (m, 6 H), 7.25–7.29 (m, 4 H); 13 C NMR (CDCl₃, 125 MHz) δ 14.0 (q), 17.1 (q), 19.8 (t), 22.3 (t), 29.8 (t), 30.0 (t), 33.0 (t), 33.1 (t), 34.1 (t), 34.25 (t), 34.31 (t), 41.5 (t), 41.9 (t), 42.6 (t), 75.2 (s), 77.5 (s), 111.7 (t), 112.1 (t), 113.2 (t), 113.6 (t), 125.75 (d), 125.78 (d), 128.40 (d), 128.35 (d), 142.3 (s), 142.4 (s), 143.2 (s), 143.6 (s), 147.8 (s); exact mass m/z calcd for C₂₅H₃₂NaO₂ (M + Na) 387.2295, found 387.2293.

8036 J. Org. Chem. Vol. 75, No. 23, 2010

2-Methyl-1,4-bis(2-phenylethyl)benzene (47). Grubbs II catalyst⁸ (0.0012 g, 0.0014 mmol) was added to a stirred solution of 45 (0.0020 g, 0.0055 mmol) in dry CH₂Cl₂ (2.5 mL) (N₂ atmosphere). After 15 h, the mixture was evaporated, and the residue (46) was dissolved in dry PhH (2 mL). TsOH \cdot H₂O (0.0010 g, 0.0053 mmol) was added, and the mixture was refluxed for 30 min. Evaporation of the solvent and preparative thin layer chromatography of the residue over silica gel (plate $5 \times 5 \times 0.025$ cm; 2%) EtOAc-petroleum ether), gave 47 (0.0015 g, ca. 91%) containing minor impurities: FTIR (CH2Cl2, cast film) 3085, 3062, 3026, 2926, 2856, 1943, 1869, 1734, 1603, 1497, 1453 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3 H), 2.84-2.94 (m, 8 H), 6.96–7.01 (m, 2 H), 7.06–7.11 (m, 1 H), 7.17–7.24 (6 H), 7.27–7.33 (m, 4 H); 13 C NMR (CDCl₃, 100 MHz) δ 19.2 (q), 35.1 (t), 36.8 (t), 37.5 (t), 38.0 (t), 125.8 (d), 125.88 (d), 125.92 (d), 128.29 (d), 128.33 (d), 128.38 (d), 128.40 (d), 128.8 (d), 130.3 (d), 135.8 (s), 137.5 (s), 139.5 (s), 142.0 (s), 142.1 (s); exact mass m/zcalcd for C₂₃H₂₄ 300.1878, found 300.1876.

2,7-Dimethyl-3,6-bis(2-phenylethyl)octa-1,7-diene-3,6-diol (48). Use of 2-Propenylmagnesium Bromide. Isopropenylmagnesium bromide (0.5 M in THF, 0.51 mL, 0.25 mmol) was added dropwise to a stirred and cooled $(-78 \,^\circ\text{C})$ solution of 4 (0.0299 g, 0.102 mmol) in dry THF (5 mL). After 1 h, the dry ice bath was replaced by an ice bath, and another portion of isopropenylmagnesium bromide (0.5 M in THF, 0.51 mL, 0.25 mmol) was added dropwise. The ice bath was left in place but not recharged, and after 5 days, the mixture was cooled (0 °C) and quenched with water (10 mL). The aqueous phase was extracted with CH₂Cl₂, and the combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 18 \text{ cm})$, using EtOAc-hexane mixtures from 5% to 40% EtOAc, gave 48 (0.0235 g, 61%) as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, microscope) 3435, 3085, 3062, 3026, 2929, 2855, 1942, 1870, 1804, 1727, 1643, 1604, 1496 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.52–1.58 (m, 1.5 H), 1.67–1.73 (m, 2.5 H), 1.75 (s, 2.5 H), 1.78 (s, 3.5 H), 1.81–1.97 (m, 6 H), 2.45–2.56 (m, 2 H), 2.62-2.72 (m, 2 H), 4.99-5.02 (m, 1.2 H), 5.03-5.06 (m, 0.8 H), 5.06-5.09 (m, 1.3 H), 5.12-5.14 (m, 0.7 H), 7.16-7.23 (m, 6 H), 7.26-7.32 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 19.8 (q), 29.8 (t), 29.9 (t), 32.9 (t), 33.0 (t), 41.5 (t), 42.1 (t), 111.5 (s), 112.2 (s), 125.7 (d), 125.8 (d), 128.38 (d), 128.40 (d), 128.42 (d), 142.48 (s), 142.51 (s), 147.5 (t), 148.0 (t) (one signal not observed due to overlap); exact mass m/z calcd for C₂₆H₃₄NaO₂ (M + Na) 401.2451, found 401.2448.

Use of 2-propenyl-lithium. *t*-BuLi (1.7 M in pentane, 0.28 mL, 0.47 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 2-bromopropene (0.021 mL, 0.237 mmol) in dry Et₂O (3 mL). After 30 min, a solution of 4 (0.0105 g, 0.0296 mmol) in Et₂O (0.5 mL plus 0.5 mL as a rinse) was added dropwise by cannula. After 3.5 h the dry ice bath was replaced by an ice bath that was left in place but not recharged, and stirring was continued for 17.5 h. The reaction mixture was cooled to 0 °C and quenched with saturated aqueous NH₄Cl (3 mL), and the aqueous phase was extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel (1.6 × 17 cm), using EtOAc—hexane mixtures from 2% to 10% EtOAc, gave 48 (0.0094 g, 72%) as an oil that was a mixture of diastereoisomers (¹³C NMR).

2,3-Dimethyl-1,4-bis(2-phenylethyl)benzene (50). Schrock catalyst¹¹ (0.0053 g, 0.0069 mmol) and then PhH (3 mL) were added to **48** (0.0131 g, 0.0346 mmol) in a Pyrex bomb (10 mL) in a glovebox (N_2). The bomb was sealed, removed from the glovebox, and heated (ca. 80 °C) for 2.5 days. The mixture was cooled to room temperature and reintroduced into the glovebox, and a sample for TLC was removed. Little conversion to **49** had occurred. The contents of the bomb were transferred to a flask

with a reflux condenser sealed onto it, and additional Schrock catalyst (0.0053 g, 0.0069 mmol) was added. The reaction vessel was removed from the glovebox, and the mixture was refluxed (80 °C) under N₂ with frequent purging, resulting in a color change from yellow to amber after 1 h. After a further 18 h, the solution was cooled and evaporated. Flash chromatography of the residue over silica gel $(1.3 \times 11 \text{ cm})$, using EtOAc-petroleum ether mixtures from 5% to 100% EtOAc, gave an unidentifiable mixture (presumably containing 49) that was dissolved in dry PhH (3 mL). TsOH \cdot H₂O (0.0066 g, 0.035 mmol) was added, and the mixture was refluxed for 3 h and then evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 18 \text{ cm})$, using EtOAc-hexane mixtures from 0% to 5% EtOAc, gave several fractions containing mostly impure 50. The material was purified by preparative TLC (silica, $5 \times 4.5 \times 0.025$ cm, 3 plates; 2% EtOAc-hexane) providing pure 50 (0.0072 g, 66%) as an oil: FTIR (CH₂Cl₂, microscope) 3085, 3061, 3025, 2961, 2928, 2868, 1943, 1869, 1801, 1735, 1704, 1678, 1603, 1582, 1540, 1496, 1453 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.24 (s, 6 H), 2.91 (apparent s, 8 H), 7.11 (s, 2 H), 7.18-7.23 (m, 6 H), 7.27-7.34 (m, 4 H); ¹³C NMR (CDCl₃, 100 MHz) δ 16.6 (q), 37.3 (t), 37.8 (t), 125.7 (d), 128.09 (d), 128.13 (d), 128.17 (d), 128.24 (d), 131.8 (s), 139.1 (d), 141.7 (d); exact mass m/z calcd for C₂₄H₂₆ 314.2035, found 314.2031.

1,4-Diethenylcyclohexadecane-1,4-diol (51). MeLi (1.6 M in Et₂O, 0.97 mL, 1.6 mmol) was added dropwise to a stirred and cooled (0 °C) solution of tetravinyltin (0.070 mL, 1.32 mmol) in dry Et_2O (6 mL). After 1.5 h, the mixture was cooled to -78 °C and a solution of 26 (0.0122 g, 0.0483 mmol) in Et₂O (1.5 mL plus 1.5 mL as a rinse) was added by cannula. The cold bath was left in place but not recharged, and stirring was continued for 5 h. The mixture was quenched with saturated aqueous NH₄Cl (25 mL), and the aqueous phase was extracted with Et_2O . The combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(0.7 \times 12 \text{ cm})$, using EtOAc-hexane mixtures from 20% to 30% EtOAc, gave 51 [0.0112 g, 75%; 87% corrected for recovered 26 (0.0017 g)] as an oil that was a mixture of diastereoisomers (¹³C NMR): FTIR (CH₂Cl₂, microscope) 3339, 3089, 3010, 2981, 2928, 2856, 1846, 1641, 1457 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta 1.28 (s, 2 \text{ H})$, 1.29 - 1.42 (m, 20 H), 1.48 - 1.59 (m, 8 H), 5.08 (dd, J = 10.8, 1.2 Hz, 2 H), 5.23 (dd, J = 17.4, 1.2 Hz, 2 H), 5.95 (dd, J = 17.4, 1.2 Hz, 2 H), 5.95 (dd, J = 17.4, 10.8 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 22.4 (t), 22.5 (t), 26.16 (t), 26.23 (t), 26.5 (t), 26.6 (t), 26.8 (t), 26.9 (t), 27.75 (t), 27.83 (t), 32.38 (t), 32.44 (t), 38.8 (t), 39.0 (t), 74.8 (s), 74.9 (s), 112.1 (t), 144.7 (d), 144.8 (d); exact mass m/z

0.0032 mmol) was added to a stirred solution of 51 (0.0100 g, 0.0324 mmol) in dry CH₂Cl₂ (3 mL) (N₂ atmosphere). After 24 h, the reaction mixture was evaporated, and dry PhH (3 mL) was added. TsOH \cdot H₂O (0.0019 g, 0.0097 mmol) was added, and the mixture was refluxed for 1 h, cooled, and partitioned between water and CH₂Cl₂. The aqueous phase was extracted with CH₂Cl₂ and hexane, and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 6 \text{ cm})$, using EtOAc-petroleum ether mixtures from 0% to 2% EtOAc, gave 53 (0.0066 g, 83%) as an oil: FTIR (CH₂Cl₂, neat film microscope) 3006, 2926, 2855, 1898, 1510, 1460, 1444 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.75-0.82 (m, 4 H), 0.93-1.00 (m, 4 H), 1.02-1.12 (m, 8 H), 1.55–1.62 (m, 4 H), 2.60–2.63 (m, 4 H), 7.08 (s, 4 H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.4 (t), 26.6 (t), 27.4 (t), 27.5 (t), 29.8 (t), 35.2 (t), 128.8 (d), 140.0 (s); exact mass m/z calcd for C₁₈H₂₈ 244.2191, found 244.2188.

Methyl 7,8,10,11-Tetradeoxy-6,9-bis(ethenyl)-2,3,4-tris-O-methyl-11-phenvl-α-p-gluco-undecanopyranoside (54). Vinylmagnesium bromide (1.0 M in THF, 1.89 mL, 1.89 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of 29 (74.3 mg, 0.189 mmol) in THF (3 mL). The cooling bath was left in place but not recharged, and stirring was continued for 7 h. The mixture was quenched with saturated aqueous NH₄Cl (3 mL) and extracted with Et₂O. The combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel $(1.5 \times 13 \text{ cm})$, using 40% EtOAc-hexanes, gave 54 (62.7 mg, 84%) as a mixture of two diastereoisomers (¹³C NMR): FTIR (CHCl₃, microscope) 3453, 3086, 3061, 3025, 2931, 2837,1717, 1640, 1604, 1559, 1540, 1497, 1453 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.56–1.92 (m, 6 H), 2.56 (s, 1 H), 2.60– 2.77 (m, 2 H), 3.11-3.15 (m, 1 H), 3.25-3.29 (m, 1 H), 3.46 (s, 3 H), 3.51-3.59 (m, 8 H), 3.61 (s, 3 H), 4.47-4.63 (m, 1 H), 4.78 (d, J = 3.5 Hz, 1 H), 5.16-5.20 (m, 1 H), 5.28-5.36 (m, 2 H),5.47–5.53 (m, 1 H), 5.78–5.95 (m, 2 H), 7.16–7.20 (m, 3 H), 7.26–7.29 (m, 2 H); 13 C NMR (CDCl₃, 125 MHz) δ 30.07 (t), 30.09 (t), 31.3 (t), 33.4 (t), 33.5 (t), 43.2 (t), 43.7 (t), 55.7 (q), 55.8 (q), 59.0 (q), 60.03 (q), 60.05 (q), 60.7 (q), 72.0 (d), 72.6 (d), 74.6 (s), 74.8 (s), 76.9 (s), 77.0 (s), 81.7 (d), 81.8 (d), 82.1 (d), 84.0 (d), 97.37 (d), 97.44 (d), 113.0 (t), 113.2 (t), 115.0 (t), 115.5 (t), 125.55 (d), 125.63 (d), 128.29 (d), 128.34 (d), 128.39 (d), 140.0 (d), 140.4 (d), 142.8 (s), 143.0 (s), 143.8 (d), 143.9 (d); exact mass m/z calcd for $C_{25}H_{38}NaO_7$ (M + Na) 473.2510, found 473.2503.

1-(2-Phenethyl)-4-[(2S,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]cyclohex-2-ene-1,4-diol (55). A solution of 54 (92.7 mg, 0.206 mmol) in CH₂Cl₂ (6 mL) was degassed for 30 min with a stream of Ar. Grubbs II catalyst⁸ (26.2 mg, 0.03) mmol) was added, and the Ar stream was continued for 15 min. The mixture was stirred and refluxed for 24 h under a static pressure of Ar and then cooled and evaporated. Flash chromatography of the residue over silica gel $(1.5 \times 13 \text{ cm})$, using first Et₂O and then EtOAc, gave 55 as a mixture of diastereoisomers [25.1 mg, 29% less polar diastereoisomer; 60.0 mg, 69% more polar diastereoisomer (98% overall)]. The less polar diastereoisomer (small impurity signals in the ¹H and ¹³C NMR spectra): FTIR (CHCl₃, microscope) 3458, 3061, 3026, 2933, 2835, 2247, 1603, 1497, 1454 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.52 (d, J = 1.0 Hz, 1 H), 1.62 (s, 1 H), 1.71-2.01 (m, 4 H), 2.15 (t, J = 13.0 Hz, 1 H), 2.28 (t, J = 13.0 Hz, 1 H), 2.78-2.90 (m, J = 13.0 Hz, 1 Hz), 2.78-2.90 (m, J = 13.0 Hz), 2.78-2.90 (m, J = 13.0 Hz), 3.90 (m, J = 13.0 Hz), 3.90 (m, J = 13.0 Hz), 3.90 (m, J =2 H), 3.25-3.28 (m, 1 H), 3.42 (t, J=9.2 Hz, 1 H), 3.51-3.53 (m, 4 H), 3.60-3.71 (m, 10 H), 4.90 (d, J = 2.0 Hz, 1 H), 5.93 (s, 2 H), 7.25-7.30 (m, 3 H), 7.35-7.38 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 29.2 (t), 30.1 (t), 31.4 (t), 44.3 (t), 55.8 (q), 59.2 (q), 60.3 (q), 61.1 (q), 69.5 (s), 70.5 (s), 73.7 (d), 80.6 (d), 82.1 (d), 84.5 (d), 97.6 (d), 126.0 (d), 128.6 (d), 128.7 (d), 131.0 (d), 135.2 (d), 142.6 (s); exact mass m/z calcd for C₂₃H₃₄NaO₇ (M + Na) 445.2197, found 445.2192.

The more polar diastereoisomer: FTIR (CHCl₃, microscope) 3441, 3061, 3026, 2934, 2835, 2248, 1603, 1497, 1453 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.74–2.07 (m, 7 H), 2.71–2.77 (m, 2 H), 3.16 (dd, J = 3.6, 9.6 Hz, 1 H), 3.28–3.34 (m, 2 H), 3.40 (s, 3 H), 3.50–3.56 (m, 5 H), 3.59 (s, 3 H), 3.62 (s, 3 H), 4.78 (d, J = 3.6 Hz, 1 H), 5.81 (AB q, J = 10.3, $\Delta \nu_{AB}$ = 7.4 Hz, 2 H), 7.15–7.20 (m, 3 H), 7.25–7.30 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 30.1 (t), 30.4 (t), 32.7 (t), 42.6 (t), 55.6 (q), 59.2 (q), 60.3 (q), 61.1 (q), 70.5 (s), 71.1 (s), 73.9 (d), 80.5 (d), 82.0 (d), 84.7 (d), 97.5 (d), 126.0 (d), 128.6 (d), 128.7 (d), 131.1 (d), 135.9 (d), 142.7 (s); exact mass *m*/*z* calcd for C₂₃H₃₄NaO₇ (M + Na) 445.2197, found 445.2195.

Methyl (5*R*)-2,3,4-Tri-*O*-methyl-5-*C*-[4-(2-phenethyl)phenyl]- α -D-*gluco*-pyranoside (56). (a) POCl₃ (0.22 mL, 2.34 mmol) was added dropwise to a stirred and cooled (0 °C) solution of the less polar diastereoisomer of 55 (19.3 mg, 0.0457 mmol) in pyridine (0.86 mL), and stirring was continued for 4 h. The ice bath was left in place but not recharged, and stirring was continued for 7.5 h.

⁽²⁸⁾ Cram, D. J.; Allinger, N. L.; Steinberg, H. J. Am. Chem. Soc. 1954, 76, 6132–6141.

Water (0.5 mL) was added, and the mixture was extracted with Et₂O. The combined organic extracts were washed with 10% hydrochloric acid, saturated aqueous NaHCO₃, water and brine, dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel $(0.6 \times 8 \text{ cm})$, using 23% EtOAchexanes, gave **56** (15 mg, 85%) as a thick oil: $[\alpha]^{20}_{D}$ 92.06 (*c* 1.22, CHCl₃); FTIR (CHCl₃, microscope) 3060, 3027, 2980, 2931, 2858, 2832, 1604, 1516, 1496, 1454 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.95 (s, 4 H), 3.06 (s, 3 H), 3.12 (dd, J = 9.0, 9.8 Hz, 1 H), 3.37 (dd, J = 3.8, 9.4 Hz, 1 H), 3.45 (s, 3 H), 3.60 (s, 3 H), 3.63 (t, J = 9.2 Hz, 1 H), 3.67 (s, 3 H), 4.44 (d, J = 9.6 Hz, 1 H), 4.92 (d, J = 3.6 Hz, 1 H), 7.18–7.23 (m, 5 H), 7.26–7.31 (m, 2 H), 7.34-7.36 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 37.9 (t), 38.1 (t), 55.6 (q), 59.4 (q), 60.6 (q), 61.3 (q), 72.9 (d), 82.1 (d), 83.5 (d), 86.0 (d), 98.1 (d), 126.2 (d), 127.9 (d), 128.6 (d), 128.7 (d), 128.8 (d), 136.7 (s), 141.9 (s), 142.1 (s); exact mass m/z calcd for C₂₃-H₃₀NaO₅ (M + Na) 409.1985, found 409.1984.

(b) POCl₃ (0.53 mL, 5.69 mmol) was added dropwise to a stirred and cooled (0 °C) solution of the more polar diastereoisomer of **55** (47 mg, 0.11 mmol) in pyridine (2 mL), and stirring was continued for 4 h. The ice bath was left in place but not recharged, and stirring was continued for 7.5 h. Water (1 mL) was added, and the mixture was extracted with Et₂O. The combined organic extracts were washed with 10% hydrochloric acid, saturated aqueous NaHCO₃, water, and brine, dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1 × 8 cm), using 23% EtOAc-hexanes, gave **56** (36.1 mg, 84%) as a thick oil.

3,6-Bis[(2S,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]octa-1,7-diene-3,6-diol (57). (a) Methyl 7,8-Dideoxy-2,3,4tri-O-methyl-α-D-gluco-oct-7-ynopyranoside (57a). A solution of ethynylmagnesium bromide (0.5 M in THF, 15 mL, 7.5 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of crude 2,3,4-tri-O-methyl- α -D-gluco-hexodialdo-1,5-pyranoside²⁴ (540 mg, 2.31 mmol) in THF (20 mL) (Ar atmosphere). The cold bath was left in place but not recharged, and stirring was continued for 18 h. The yellow solution was then quenched with saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted with Et2O. The combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (2.5×15 cm), using 50% EtOAc-hexanes, gave 57a (304.8 mg, 51%) as an light yellow oil that was a mixture of two diastereoisomers (13C NMR): FTIR (CHCl₃, microscope) 3418, 3252, 2982, 2934, 2837, 2249, 2114, 1740, 1670, 1466, 1466 cm^{-1} ; ¹H NMR (CDCl₃, 500 MHz) δ 2.46–2.54 (m, 1 H), 2.65 (d, *J* = 10.5 Hz, 1 H), 3.17–3.26 (m, 1 H), 3.33 (dd, *J* = 9.2, 9.7 Hz, 1 H), 3.42–3.44 (m, 3 H), 3.51–3.72 (m, 11 H), 4.56–4.67 (m, 1 H), 4.86–4.88 (m, 1 H); 13 C NMR (CDCl₃, 125 MHz) δ 55.1 (q), 55.3 (q), 59.1 (q), 60.6 (q), 60.8 (q), 60.9 (q), 61.3 (q), 62.4 (q), 71.8 (d), 71.9 (d), 73.1 (d), 74.8 (d), 79.3 (d), 81.0 (d), 81.8 (d), 82.7 (s), 83.4 (d), 83.6 (d), 97.55 (d), 97.59 (d); exact mass m/z calcd for C₁₂H₂₀NaO₆ (M + Na) 283.1152, found 283.1152.

(b) 1,4-Bis[(2R,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]but-2-yne-1,4-diol (57b). BuLi (2.5 M in hexanes, 0.7 mL, 1.75 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of **57a** (228 mg, 0.877 mmol) in THF (8 mL). After 1.5 h, freshly prepared crude methyl 2,3,4-tri-O-methyl- α -D-glucohexodialdo-1,5-pyranoside²⁴ (133.4 mg, 0.57 mmol) in THF (1 mL) was added dropwise. The cooling bath was left in place but not recharged, and stirring was continued for 40 h. The mixture was quenched with saturated aqueous NH₄Cl (8 mL) and extracted with EtOAc. The combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel $(2.5 \times 15 \text{ cm})$, using 50% EtOAc-hexanes and then MeOH-EtOAc (3:100), gave 57b (174 mg, 61% or 72%, based on recovered starting material) as a white solid that was a mixture of diastereoisomers (¹³C NMR): FTIR (CHCl₃, microscope) 3433, 2934, 2836, 2249, 1466, 1446 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.63–2.75 (m, 2 H), 3.13–3.26 (m, 2 H),

3.28–3.46 (m, 8 H), 3.47–3.74 (m, 22 H), 4.59–4.69 (m, 2 H), 4.79–4.83 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 55.2 (q), 55.3 (q), 59.1 (q), 60.60 (q), 60.63 (q), 60.72 (q), 60.78 (q), 60.82 (q), 60.85 (q), 61.4 (q), 61.7 (q), 62.5 (q), 62.6 (q), 70.6 (d), 71.7 (d), 71.9 (d), 72.0 (d), 72.3 (d), 79.3 (d), 79.4 (d), 79.6 (d), 81.0 (d), 81.1 (d), 81.6 (d), 81.7 (d), 81.8 (d), 82.2 (s), 83.4 (d), 83.6 (d), 83.9 (s), 85.5 (s), 97.5 (d), 97.6 (d); exact mass *m*/*z* calcd for C₂₂H₃₈NaO₁₂ (M + Na) 517.2255, found 517.2259.

(c) 1,4-Bis[(2R,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]butane-1,4-diol (57c). Pd(OH)₂-C (20% w/w, 23 mg) was added to a solution of 57b (58.4 mg, 0.118 mmol) in MeOH (1.5 mL), and the mixture was stirred under H₂ (balloon) for 2 h and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(1.2 \times 15 \text{ cm})$, using EtOAc and then MeOH-EtOAc (3:50), gave 57c (35.2 mg, 60%) as a white solid that was a mixture of diastereoisomers (¹³C NMR): FTIR (CHCl₃, microscope) 3472, 2935, 2835, 2248, 1445, 1379 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.50– 1.94 (m, 4 H), 2.38 (s, 1 H), 3.12-3.17 (m, 3 H), 3.26-3.31 (m, 2 H), 3.35-3.40 (m, 7 H), 3.46-3.53 (m, 9 H), 3.56-3.63 (m, 12 H), 3.80 $(d, J = 3 Hz, 2 H), 4.72-4.80 (m, 2 H); {}^{13}C NMR (CDCl_3, 125)$ MHz) δ 29.1 (t), 30.5 (t), 32.0 (t), 55.2 (q), 55.3 (q), 58.9 (q), 59.0 (q), 60.2 (q), 60.7 (q), 60.8 (q), 69.2 (d), 69.4 (d), 71.1 (d), 71.6 (d), 72.2 (d), 72.5 (d), 73.2 (d), 79.5 (d), 81.7 (d), 82.0 (d), 82.6 (d), 83.6 (d), 83.8 (d), 97.3 (d), 97.6 (d); exact mass m/z calcd for C₂₂H₄₂NaO₁₂ (M + Na) 521.2568, found 521.2568.

(d) 1,4-Bis[(2S,3S,4S,5R,6S)tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]butane-1,4-dione (57d). DMSO (0.04 mL, 0.564 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise to a stirred and cooled (-78 °C) solution of (COCl)₂ (0.023 mL, 0.266 mmol) in CH₂Cl₂ (0.5 mL). After 15 min, a solution of 57c (50.0 mg, 0.10 mmol) in CH₂Cl₂ (1.0 mL) was added dropwise and stirring at -78 °C was continued for 35 min. Then Et₃N (0.08 mL) was added dropwise, and stirring was continued at -78 °C for 5 min. The cooling bath was removed, stirring was continued for 25 min, and water (2 mL) was added. The organic layer was separated, dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel $(1.2 \times 15 \text{ cm})$, using 75% EtOAc-hexanes, gave **57d** (47.6 mg, 96%) as a colorless oil: $[\alpha]_D^{20}$ 132.8 (*c* 1.32, CHCl₃); FTIR (CHCl₃, cast microscope) 2935, 2836, 1726, 1466, 1446 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.79-2.87 (m, 2 H), 2.97-3.05 (m, 2 H), 3.21 (dd, J=3.5, 9.5 Hz, 2 H), 3.28 (dd, J=8.5, 10.0 Hz, 2 H), 3.44 (s, 6 H), 3.51-3.56 (m, 14 H), 3.62 (s, 6 H), 4.06 (d, J = 10.0 Hz, 2 H), 4.85 (d, J = 4.0 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz) δ 34.2 (t), 55.9 (q), 59.4 (q), 60.8 (q), 61.2 (q), 74.1 (d), 81.0 (d), 81.5 (d), 83.8 (d), 98.2 (d), 205.4 (s); exact mass m/z calcd for C₂₂H₃₈NaO₁₂ (M + Na) 517.2255, found 517.2265.

3,6-Bis[(**2***S*,**3***S*,**4***S*,**5***R*,**6***S*)-tetrahydro-**3**,**4**,**5**,**6**-tetramethoxypyran-2-yl]octa-1,7-diene-3,6-diol (57). Vinylmagnesium bromide (1.0 M in THF, 1.1 mL, 1.10 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of **57d** (55.7 mg, 0.11 mmol) in THF (1 mL). The cooling bath was left in place but not recharged, and stirring was continued for 16 h. The mixture was then quenched with saturated aqueous NH₄Cl (1 mL) and extracted with Et₂O. The combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.2×15 cm), using 67% EtOAc-hexanes, gave **57** (63.0 mg, ca. 100%) as a mixture of diastereoisomers (¹³C NMR) that contained some impurities (¹H NMR). The NMR spectra were too complicated to be of diagnostic value: exact mass *m*/*z* calcd for C₂₆H₄₆NaO₁₂ (M + Na) 573.2881, found 573.2880.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supporting Information Available: General experimental techniques and copies of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.